548 research outputs found
Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method
The determination of the longitudinal spin Seebeck effect (LSSE) coefficient
is currently plagued by a large uncertainty due to the poor reproducibility of
the experimental conditions used in its measurement. In this work we present a
detailed analysis of two different methods used for the determination of the
LSSE coefficient. We have performed LSSE experiments in different laboratories,
by using different setups and employing both the temperature difference method
and the heat flux method. We found that the lack of reproducibility can be
mainly attributed to the thermal contact resistance between the sample and the
thermal baths which generate the temperature gradient. Due to the variation of
the thermal resistance, we found that the scaling of the LSSE voltage to the
heat flux through the sample rather than to the temperature difference across
the sample greatly reduces the uncertainty. The characteristics of a single
YIG/Pt LSSE device obtained with two different setups was Vm/W and Vm/W with the heat flux method
and V/K and V/K
with the temperature difference method. This shows that systematic errors can
be considerably reduced with the heat flux method.Comment: PDFLaTeX, 10 pages, 6 figure
Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure
Space and time resolved concentrations of Ar () metastable atoms at
the exit of an atmospheric pressure radio-frequency micro-plasma jet were
measured using tunable diode laser absorption spectroscopy. The discharge
features a coaxial geometry with a hollow capillary as an inner electrode and a
ceramic tube with metal ring as outer electrode. Absorption profiles of
metastable atoms as well as optical emission measurements reveal the dynamics
and the filamentary structure of the discharge. The average spatial
distribution of Ar metastables is characterized with and without a target in
front of the jet, showing that the target potential and therewith the electric
field distribution substantially changes the filaments' expansion. Together
with the detailed analysis of the ignition phase and the discharge's behavior
under pulsed operation, the results give an insight into the excitation and
de-excitation mechanisms
Electronic and magnetic structure of epitaxial NiO/FeO(001) heterostructures grown on MgO(001) and Nb-doped SrTiO(001)
We study the underlying chemical, electronic and magnetic properties of a
number of magnetite based thin films. The main focus is placed onto
NiO/FeO(001) bilayers grown on MgO(001) and Nb-SrTiO(001)
substrates. We compare the results with those obtained on pure FeO(001)
thin films. It is found that the magnetite layers are oxidized and Fe
dominates at the surfaces due to maghemite (-FeO) formation,
which decreases with increasing magnetite layer thickness. From a layer
thickness of around 20 nm on the cationic distribution is close to that of
stoichiometric FeO. At the interface between NiO and FeO we
find the Ni to be in a divalent valence state, with unambiguous spectral
features in the Ni 2p core level x-ray photoelectron spectra typical for NiO.
The formation of a significant NiFeO interlayer can be excluded by
means of XMCD. Magneto optical Kerr effect measurements reveal significant
higher coercive fields compared to magnetite thin films grown on MgO(001), and
a 45 rotated magnetic easy axis. We discuss the spin magnetic moments
of the magnetite layers and find that the moment increases with increasing thin
film thickness. At low thickness the NiO/FeO films grown on
Nb-SrTiO exhibits a significantly decreased spin magnetic moments. A
thickness of 20 nm or above leads to spin magnetic moments close to that of
bulk magnetite
- …