87 research outputs found

    Investigation of heavy metal contents in Cow milk samples from area of Dhaka, Bangladesh

    Get PDF
    Background: Cow milk is considered as one of the responsible food sources contaminated with heavy metals. The objectives of the study were to assess the content of selected metals in cow milk and its associated human health risks in the food chain of Bangladesh. A total of 90 cow milk samples of Branded, Dairy and Domestically produced milk were collected randomly from different sources of Savar Upazila in Dhaka area. Cadmium (Cd), chromium (Cr), lead (Pb), manganese (Mn), copper (Cu) and iron (Fe) contents in collected milk samples were determined using Flame Atomic Absorption Spectrometry (FAAS). To ensure quality control, one of the best quality control parameters i.e. recovery test; from eight various sample digestion methods were used. The Hazard Quotient (HQ) and Carcinogenic Risk (CR) values were also calculated. Results: From the results, it was found that, the orders of heavy metal content in brand, dairy and domestic cow milk were Cr > Fe > Cu>Mn > Cd > Pb, Cr > Fe > Mn > Cu > Cd > Pb and Fe > Cr > Mn > Cu > Cd > Pb, respectively. Among the six metals, only Cr showed to exceed the highest Estimated Daily Intake (EDI) rate (for brand cow milk: 0.413 mg/day, dairy farm cow milk: 0.243 mg/day, domestic cow milk: 0. 352 mg/day),and the comparison percentages of calculated values per permeable values were as follows; 206.5 % for brand cow milk,121.5 % for dairy farm cow milk and 176.0 % for domestic cow milk. Hazard Quotients (HQ) values and Carcinogenic Risk (CR) values were found within the acceptable level. Conclusion: Although, the metal content in sampled cow milks were within the safe limit, the potential human health risks cannot be neglected for the regular/long time consumption of heavy metal contained cow milk

    Comparison of the structure and activity of glycosylated and asglycosylated human carboxylesterase 1

    Get PDF
    Human Carboxylesterase 1 (hCES1) is the key liver microsomal enzyme responsible for detoxification and metabolism of a variety of clinical drugs. To analyse the role of the single N-linked glycan on the structure and activity of the enzyme, authentically glycosylated and aglycosylated hCES1, generated by mutating asparagine 79 to glutamine, were produced in human embryonic kidney cells. Purified enzymes were shown to be predominantly trimeric in solution by analytical ultracentrifugation. The purified aglycosylated enzyme was found to be more active than glycosylated hCES1 and analysis of enzyme kinetics revealed that both enzymes exhibit positive cooperativity. Crystal structures of hCES1 a catalytically inactive mutant (S221A) and the aglycosylated enzyme were determined in the absence of any ligand or substrate to high resolutions (1.86 Å, 1.48 Å and 2.01 Å, respectively). Superposition of all three structures showed only minor conformational differences with a root mean square deviations of around 0.5 Å over all Cα positions. Comparison of the active sites of these un-liganded enzymes with the structures of hCES1-ligand complexes showed that side-chains of the catalytic triad were pre-disposed for substrate binding. Overall the results indicate that preventing N-glycosylation of hCES1 does not significantly affect the structure or activity of the enzyme

    Public policy for academic entrepreneurship initiatives: a review and critical discussion

    Full text link

    Potential of Micranthemum umbrosum for phytofiltration of organic arsenic species from oxic water environment

    Get PDF
    Arsenic (As) is a toxic and carcinogenic metalloid that causes various hazards to human health. Phytofiltration is a more eco-friendly and green approach than chemoremediation, or other traditional technologies, for removing As from aquatic environments. Recently, Micranthemum umbrosum was shown as a promising candidate for phytofiltration of inorganic As species. This work examines the potential application of M. umbrosum to phytofiltration of organic As species, such as monomethylarsonic acid (MMAA, CH5AsO3) and dimethylarsinic acid (DMAA, C2H7AsO2), from oxic water environments. M. umbrosum plants were grown in two test concentrations of MMAA and DMAA, or a control, in a hydroponic experiment. After seven days, leaves accumulated 90 +/- 3.2 and 48 +/- 1.6 A mu g As g(-1) (oven dry basis) from 1 A mu g As mL(-1) of water added from MMAA and DMAA, respectively. Bioconcentration factor values and translocation factor values were always greater than 1.0, indicating that M. umbrosum was a good As accumulator and that leaves accumulated significantly higher amounts of As than stems and roots. Analysis of macro- and micronutrient data showed that M. umbrosum had higher resistance to organic As treatments than the control. These results confirm the potential application of M. umbrosum for phytofiltration of organic As from contaminated oxic water environments

    Application of zerovalent iron impregnated chitosan-caboxymethyl-β-cyclodextrin composite beads as arsenic sorbent

    Get PDF
    Nano zerovalent iron impregnated chitosan-carboxymethyl β-cyclodextrin complex has been successfully tested for arsenic removal. Addition of chitosan enhances the stability of Fe0 particles and the carboxymethyl β-cyclodextrin gives the composite more active sites to interact with the target ions. Removal of arsenic(III) and arsenic(V) was studied through batch adsorption at pH 6.0 under equilibrium and dynamic conditions. Prepared beads were characterized by FT-IR, SEM, BET and XPS. The rate of reduction can be expressed by pseudo-second-order reaction kinetics plus the equilibrium data were well fitted to Langmuir adsorption models. Equilibrium is achieved after 3 h and As(III) and As(V) were reduced to <20 μg/L which accounts 99% of the total removal below the Bangladesh standard (50 μg/L). The adsorption capacity was calculated from Langmuir model and found to be 18.51 mg/g and 13.51 mg/g for As(III) and As(V), respectively. The adsorbent can be separated magnetically and thus reused successfully for the removal of total inorganic arsenic from water. So, this adsorbent can be a potential material for the remediation of contaminated surface and ground water

    ABE-VIEW: Android Interface for Wireless Data Acquisition and Control

    No full text
    Advances in scientific knowledge are increasingly supported by a growing community of developers freely sharing new hardware and software tools. In this spirit we have developed a free Android app, ABE-VIEW, that provides a flexible graphical user interface (GUI) populated entirely from a remote instrument by ascii-coded instructions communicated wirelessly over Bluetooth. Options include an interactive chart for plotting data in real time, up to 16 data fields, and virtual controls including buttons, numerical controls with user-defined range and resolution, and radio buttons which the user can use to send coded instructions back to the instrument. Data can be recorded into comma delimited files interactively at the user&rsquo;s discretion. Our original objective of the project was to make data acquisition and control for undergraduate engineering labs more modular and affordable, but we have also found that the tool is highly useful for rapidly testing novel sensor systems for iterative improvement. Here we document the operation of the app and syntax for communicating with it. We also illustrate its application in undergraduate engineering labs on dynamic systems modeling, as well as for identifying the source of harmonic distortion affecting electrochemical impedance measurements at certain frequencies in a novel wireless potentiostat
    corecore