75 research outputs found

    Ungulate herbivory modifies the effects of climate change on mountain forests

    Get PDF
    Recent temperature observations suggest a general warming trend that may be causing the range of tree species to shift to higher latitudes and altitudes. Since biotic interactions such as herbivory can change tree species composition, it is important to understand their contribution to vegetation changes triggered by climate change. To investigate the response of forests to climate change and herbivory by wild ungulates, we used the forest gap model ForClim v2.9.6 and simulated forest development in three climatically different valleys in the Swiss Alps. We used altitudinal transects on contrasting slopes covering a wide range of forest types from the cold (upper) to the dry (lower) treeline. This allowed us to investigate (1) altitudinal range shifts in response to climate change, (2) the consequences for tree species composition, and (3) the combined effect of climate change and ungulate herbivory. We found that ungulate herbivory changed species composition and that both basal area and stem numbers decreased with increasing herbivory intensity. Tree species responded differently to the change in climate, and their ranges did not change concurrently, thus causing a succession to new stand types. While climate change partially compensated for the reductions in basal area caused by ungulate herbivory, the combined effect of these two agents on the mix of the dominant species and forest type was non-compensatory, as browsing selectively excluded species from establishing or reaching dominance and altered competition patterns, particularly for light. We conclude that there is an urgent need for adaptive forest management strategies that address the joint effects of climate change and ungulate herbivor

    Generating Non-Linear Interpolants by Semidefinite Programming

    Full text link
    Interpolation-based techniques have been widely and successfully applied in the verification of hardware and software, e.g., in bounded-model check- ing, CEGAR, SMT, etc., whose hardest part is how to synthesize interpolants. Various work for discovering interpolants for propositional logic, quantifier-free fragments of first-order theories and their combinations have been proposed. However, little work focuses on discovering polynomial interpolants in the literature. In this paper, we provide an approach for constructing non-linear interpolants based on semidefinite programming, and show how to apply such results to the verification of programs by examples.Comment: 22 pages, 4 figure

    Sharper and Simpler Nonlinear Interpolants for Program Verification

    Full text link
    Interpolation of jointly infeasible predicates plays important roles in various program verification techniques such as invariant synthesis and CEGAR. Intrigued by the recent result by Dai et al.\ that combines real algebraic geometry and SDP optimization in synthesis of polynomial interpolants, the current paper contributes its enhancement that yields sharper and simpler interpolants. The enhancement is made possible by: theoretical observations in real algebraic geometry; and our continued fraction-based algorithm that rounds off (potentially erroneous) numerical solutions of SDP solvers. Experiment results support our tool's effectiveness; we also demonstrate the benefit of sharp and simple interpolants in program verification examples

    Material Symmetry to Partition Endgame Tables

    Get PDF
    Many games display some kind of material symmetry . That is, some sets of game elements can be exchanged for another set of game elements, so that the resulting position will be equivalent to the original one, no matter how the elements were arranged on the board. Material symmetry is routinely used in card game engines when they normalize their internal representation of the cards. Other games such as chinese dark chess also feature some form of material symmetry, but it is much less clear what the normal form of a position should be. We propose a principled approach to detect material symmetry. Our approach is generic and is based on solving multiple rel- atively small sub-graph isomorphism problems. We show how it can be applied to chinese dark chess , dominoes , and skat . In the latter case, the mappings we obtain are equivalent to the ones resulting from the standard normalization process. In the two former cases, we show that the material symmetry allows for impressive savings in memory requirements when building endgame tables. We also show that those savings are relatively independent of the representation of the tables

    Dispersal and microsite limitation in an abandoned calcareous grassland of the southern prealps. Folia Geobotanica

    No full text
    Abstract: Dispersal limitation is often involved when the species composition of a dry abandoned grassland shows a slow response to resumed regular mowing. A seed-addition experiment, using 32 species which do not belong to the local species pool, was performed on Monte San Giorgio (southern Switzerland) to test whether the low recruitment success was due to dispersal limitation or due to unfavourable microsite conditions. In October t997, 20 species were individually sown in six 3 x 4 m blocks of a 2 x 2 factorial "partial" split-plot design with treatments of abandonment vs. mowing and undisturbed vs. root-removed soil, this last being applied in small naturally-degradable pots. Moreover, 12 species were sown only in the treatments on undisturbed soil. Seedlings of sown and spontaneously germinating seeds were observed on 16 occasions over one 12-month period. Seeds of 31 out of the 32 species germinated. Twenty-four species showed germination rates higher than 5% and different seasonal germination patterns. Established vegetation, especially the tussocks of Molinia arundinacea, reduced the quality of microsites for germination. Whereas a few species germinated better under the litter of Molinia arundinacea, many more germinated better under the more variable microsite conditions of a mown grassland. Only a few seedlings of 25 species out of the 31 germinated species survived until October 1998. Seedling survival was negatively affected by litter, unfavourable weather conditions (frost and dry periods followed by heavy rains) and herbivory (slugs and grasshoppers). Tussocks of Molinia arundinacea, however, tended to protect seedlings. The poor establishment success of "new" species observed in abandoned meadows .on Monte San Giorgio after resumed mowing is due to dispersal and microsite limitations

    Tram Safety in Mixed Traffic: Best Practices from Switzerland

    No full text
    This paper presents an analysis of tram safety in Switzerland and best practices for operating trams in mixed traffic developed by Swiss tram operators and authorities. Operating trams in mixed traffic can create safety problems because trams have differing operating characteristics from other roadway traffic. It is not always feasible to provide complete separation of tramways from other road users in crowded cities. Therefore, improving tram safety in mixed traffic has gained significant attention in recent years. In Switzerland, the majority of tram collisions occur with cars, but the most severe consequences stem from collisions with pedestrians and bicycles. The location of tram collisions is linked to the likelihood of interactions and, therefore, to the amount of tram service and traffic levels. Unfortunately, the possibilities for quantitatively assessing the safety of specific street configurations are limited because of missing secondary data on context, the small number of tram accidents, and the large number of potentially important variables. Therefore, this research supplemented available quantitative data with qualitative data. The most pertinent safety issues operators face are conflicts with turning vehicles (left-turn issue), disrespect of traffic signals, confusing or ambiguous layouts, distracted pedestrians, pedestrians unaware that trams have priority, missing physical separation in semiexclusive running sections, and lack of visibility. Although many measures have been successfully applied to mitigate these issues, it is not possible to achieve absolute safety, particularly where people’s behavior is a main source of accidents

    Context-Enhanced Directed Model Checking

    No full text
    Abstract. Directed model checking is a well-established technique to efficiently tackle the state explosion problem when the aim is to find error states in concurrent systems. Although directed model checking has proved to be very successful in the past, additional search techniques provide much potential to efficiently handle larger and larger systems. In this work, we propose a novel technique for traversing the state space based on interference contexts. The basic idea is to preferably explore transitions that interfere with previously applied transitions, whereas other transitions are deferred accordingly. Our approach is orthogonal to the model checking process and can be applied to a wide range of search methods. We have implemented our method and empirically evaluated its potential on a range of non-trivial case studies. Compared to standard model checking techniques, we are able to detect subtle bugs with shorter error traces, consuming less memory and time.
    corecore