52 research outputs found

    Fanny Copeland and the geographical imagination

    Get PDF
    Raised in Scotland, married and divorced in the English south, an adopted Slovene, Fanny Copeland (1872 – 1970) occupied the intersection of a number of complex spatial and temporal conjunctures. A Slavophile, she played a part in the formation of what subsequently became the Kingdom of Yugoslavia that emerged from the First World War. Living in Ljubljana, she facilitated the first ‘foreign visit’ (in 1932) of the newly formed Le Play Society (a precursor of the Institute of British Geographers) and guided its studies of Solčava (a then ‘remote’ Alpine valley system) which, led by Dudley Stamp and commended by Halford Mackinder, were subsequently hailed as a model for regional studies elsewhere. Arrested by the Gestapo and interned in Italy during the Second World War, she eventually returned to a socialist Yugoslavia, a celebrated figure. An accomplished musician, linguist, and mountaineer, she became an authority on (and populist for) the Julian Alps and was instrumental in the establishment of the Triglav National Park. Copeland’s role as participant observer (and protagonist) enriches our understanding of the particularities of her time and place and illuminates some inter-war relationships within G/geography, inside and outside the academy, suggesting their relative autonomy in the production of geographical knowledge

    Lignin structural changes during liquefaction in acidified ethylene glycol

    Get PDF
    Beech (Fagus Sylvatica) milled-wood lignin was used as a model substrate in a study of lignin-catalyzed liquefaction in the presence of p-toluene sulfonic acid monohydrate (PTSA) or sulphuric acid as the catalysts. The structural changes that lignin undergoes during the treatment were studied by NMR spectroscopy, FTIR, size-exclusion chromatography, and high-performance liquid chromatography. For the sulphuric acid-catalyzed liquefaction, it was shown that the greater hydronium ion concentration in the reaction mixture induced formation of more condensed structures compared to the ones obtained after PTSA-catalyzed liquefaction. In addition, lignin during the PTSA-catalyzed liquefaction suffered degradation and was functionalized by the ethylene glycol. Gradual introduction of the ethylene glycol moieties into the lignin structure formed a condensed lignin-based polymeric material with predominant aromatic hydroxyl groups. HPLC and NMR analysis of the liquefied lignin with low-molecular mass fraction confirmed the presence of lignin monomers and further conversion of initially identified products into the aliphatic, aromatic (syringyl- and guaiacyl-based) esters and acids. © 2012 Copyright Taylor and Francis Group, LLC

    Influence of the glycol on the product structure during the wood liquefaction

    No full text
    The object of our work was the determination of the liquefying agent influence to the final lignin-based polymer structure formed during the wood liquefaction. For this purpose a comprehensive lignin-based polymer characterization was performed using quantitative 31P and 13C NMR (Nuclear Magnetic Resonance) and size-exclusion chromatography. Liquefied wood samples for analysis were prepared using a specific isolation procedure which enabled the separation of the high-molecular mass material (lignin-based polymer LBP) from the low-molecular mass products in glycol fraction. It was determined, that the final lignin-based polymer is produced by the predominant condensation reactions between the phenolic lignin subunits followed by the incorporation of the aliphatic liquefying agent moieties. As result, hydroxyl group content, aliphatic carbon and aromatic unit content in lignin-based polymer as well as molecular mass were found to be dependant on the type of the used polyhydric alcohol

    Structural evolution of indomethacin particles upon milling: Time-resolved quantification and localization of disordered structure studied by IGC and DSC.

    No full text
    The amorphization of indomethacin was induced by milling. The mass fraction of the amorphous phase in the drug milled for various time intervals was determined with differential scanning calorimetry (DSC). Because the surface fraction amorphized by milling can be much higher than the mass fraction, which can have a large impact on the powder properties, a method for quantification of surface fraction amorphized by milling using inverse gas chromatography (IGC) was developed. A calibration curve was constructed by mixing completely amorphous indomethacin (obtained after milling for 120 min) with various amounts of the initial crystalline sample. Linear part of the curve was then used to quantify the surface amorphous content of samples milled for different time intervals. Surface and mass amorphization kinetics were determined and fitted to a first-order model. It was found that the surface amorphization rate is an order of magnitude higher than the mass amorphization rate. Results confirmed that IGC is a sensitive method for detection and quantification of the fraction of amorphous surface of milled indomethacin powder. If suitably combined with other techniques, this method represents a relatively general approach for the localization and quantification of the surface amorphous fraction in crystalline substances that transform into amorphous ones upon intensive milling
    corecore