1,152 research outputs found

    Gate-controlled generation of optical pulse trains using individual carbon nanotubes

    Get PDF
    We report on optical pulse-train generation from individual air-suspended carbon nanotubes under an application of square-wave gate voltages. Electrostatically-induced carrier accummulation quenches photoluminescence, while a voltage sign reversal purges those carriers, resetting the nanotubes to become luminescent temporarily. Frequency domain measurements reveal photoluminescence recovery with characteristic frequencies that increase with excitation laser power, showing that photoexcited carriers quench the emission in a self-limiting manner. Time-resolved measurements directly confirm the presence of an optical pulse train sychronized to the gate voltage signal, and flexible control over pulse timing and duration is demonstrated.Comment: 4 pages, 4 figure

    Stark effect of excitons in individual air-suspended carbon nanotubes

    Get PDF
    We investigate electric-field induced redshifts of photoluminescence from individual single-walled carbon nanotubes. The shifts scale quadratically with field, while measurements with different excitation powers and energies show that effects from heating and relaxation pathways are small. We attribute the shifts to the Stark effect, and characterize nanotubes with different chiralities. By taking into account exciton binding energies for air-suspended tubes, we find that theoretical predictions are in quantitative agreement.Comment: 4 pages, 3 figure

    Spontaneous exciton dissociation in carbon nanotubes

    Get PDF
    Simultaneous photoluminescence and photocurrent measurements on individual single-walled carbon nanotubes reveal spontaneous dissociation of excitons into free electron-hole pairs. Correlation of luminescence intensity and photocurrent shows that a significant fraction of excitons are dissociating during their relaxation into the lowest exciton state. Furthermore, the combination of optical and electrical signals also allows for extraction of the absorption cross section and the oscillator strength. Our observations explain the reasons for photoconductivity measurements in single-walled carbon nanotubes being straightforward despite the large exciton binding energies.Comment: 4 pages, 3 figure

    Conceptual structure of self-curiosity in Japan

    Get PDF
    Recently, self-curiosity has attracted scholarly attention as a crucial factor in psychological tests and therapy processes. To measure individuals’ degree of self-curiosity, researchers developed the self-curiosity attitude–interest (SCAI) scale; it originated in Italy and has been applied across cultures. This study investigates whether the original SCAI scale can be adapted in Japan and explores the characteristics of the structure of self-curiosity in Japan. Data from 257 undergraduate students were collected through a website, and exploratory factor analysis was conducted. The original 7-item version of the scale exhibited a poor fit. Therefore, nine new items were added to the statements included in the original scale, and the 16 resulting items were employed to investigate the structure of self-curiosity in Japan. Exploratory and confirmatory factor analyses demonstrated that the Japanese version of the SCAI scale (SCAI-J) comprises seven new items and follows the two-factor structure (i.e., attitude and interest) of the original SCAI scale. In terms of construct validity, the SCAI-J scale produced significant correlations with the Japanese versions of the Satisfaction with Life Scale and the Rumination–Reflection Questionnaire as well as the short form of the Japanese Big-Five scale. These results suggest that self-curiosity is a common concept despite the differences among European, Central American and Asian cultures

    Dislocation theory of steady and transient creep of crystalline solids: predictions for olivine

    Get PDF
    Significance Many important deformation processes take place at strain rates that are too slow to be investigated experimentally. For example, strain rates in Earth’s mantle are typically ten orders of magnitude slower than in the laboratory. To bridge this gap, empirical relationships are extrapolated with large epistemic uncertainties. We propose a model for deformation derived from the microphysics of deformation. In application to olivine, the main mineral of Earth’s upper mantle, this model explains the scaling relationships observed under a range of laboratory conditions. In extrapolation to Earth’s mantle, the model predicts a transition in the dominant microphysical processes, leading to predictions distinct from previous studies. For instance, following abrupt stress changes, it predicts rapid transient deformation. Abstract In applications critical to the geological, materials, and engineering sciences, deformation occurs at strain rates too small to be accessible experimentally. Instead, extrapolations of empirical relationships are used, leading to epistemic uncertainties in predictions. To address these problems, we construct a theory of the fundamental processes affecting dislocations: storage and recovery. We then validate our theory for olivine deformation. This model explains the empirical relationships among strain rate, applied stress, and dislocation density in disparate laboratory regimes. It predicts the previously unexplained dependence of dislocation density on applied stress in olivine. The predictions of our model for Earth conditions differ from extrapolated empirical relationships. For example, it predicts rapid, transient deformation in the upper mantle, consistent with recent measurements of postseismic creep

    Lack of antigen-specific tissue remodeling in mice deficient in the macrophage galactose-type calcium-type lectin 1/CD301a.

    Get PDF
    Macrophage galactose-type C-type lectins (MGLs), which were recently named CD301, have 2 homologues in mice: MGL1 and MGL2. MGLs are expressed on macrophages and immature dendritic cells. The persistent presence of granulation tissue induced by a protein antigen was observed in wild-type mice but not in mice lacking an endogenous, macrophage-specific, galactose-type calcium-type lectin 1 (MGL1) in an air pouch model. The anti-MGL1 antibody suppressed the granulation tissue formation in wild-type mice. A large number of cells, present only in the pouch of MGL1-deficient mice, were not myeloid or lymphoid lineage cells and the number significantly declined after administration of interleukin 1 alpha (IL-1alpha) into the pouch of MGL1-deficient mice. Furthermore, granulation tissue was restored by this treatment and the cells obtained from the pouch of MGL1-deficient mice were incorporated into the granulation tissue when injected with IL-1alpha. Taken together, MGL1 expressed on a specific subpopulation of macrophages that secrete IL-1alpha was proposed to regulate specific cellular interactions crucial to granulation tissue formation

    The effect of intracrystalline water on the mechanical properties of olivine at room temperature

    Get PDF
    The effect of small concentrations of intracrystalline water on the strength of olivine is significant at asthenospheric temperatures but is poorly constrained at lower temperatures applicable to the shallow lithosphere. We examined the effect of water on the yield stress of olivine during low-temperature plasticity using room-temperature Berkovich nanoindentation. The presence of water in olivine (1,600 ppm H/Si) does not affect hardness or yield stress relative to dry olivine (≤40 ppm H/Si) outside of uncertainty but may slightly reduce Young’s modulus. Differences between water-bearing and dry crystals in similar orientations were minor compared to differences between dry crystals in different orientations. These observations suggest water content does not affect the strength of olivine at low homologous temperatures. Thus, intracrystalline water does not play a role in olivine deformation at these temperatures, implying that water does not lead to weakening in the coldest portions of the mantle

    Rare event simulation for dynamic fault trees

    Get PDF
    Fault trees (FT) are a popular industrial method for reliability engineering, for which Monte Carlo simulation is an important technique to estimate common dependability metrics, such as the system reliability and availability. A severe drawback of Monte Carlo simulation is that the number of simulations required to obtain accurate estimations grows extremely large in the presence of rare events, i.e., events whose probability of occurrence is very low, which typically holds for failures in highly reliable systems. This paper presents a novel method for rare event simulation of dynamic fault trees with complex repairs that requires only a modest number of simulations, while retaining statistically justified confidence intervals. Our method exploits the importance sampling technique for rare event simulation, together with a compositional state space generation method for dynamic fault trees. We demonstrate our approach using two parameterized sets of case studies, showing that our method can handle fault trees that could not be evaluated with either existing analytical techniques, nor with standard simulation techniques
    corecore