91 research outputs found

    Recognition Memory for High and Low Associative Stimuli in Autistic Individuals with Outstanding Memory Skill

    Get PDF
    Individuals with autism exhibit typical recognition memory performance, but they show a reduced use of context and relational processing in more complex memory tasks. It is unclear whether the same is true for autistic individuals with exceptional memory skill for whom superior rote memory skill has been assumed.In this study, we investigated recognition memory for high and low associative stimuli in autistic memory experts. In accord with the rote memory notion, we expected an equal recognition performance for high and low associative stimuli and superior memorizing of nonsense material compared to control participants.Seven autistic memory experts and seven typically developed control subjects, matched according to age, sex, handedness, and full-scale intelligence quotient (IQ), were examined on a continuous old-new recognition paradigm, including high or low associative pseudowords and shapes. Memory expertise was characterized as a currently present outstanding memory skill above the subject's general level of ability and above the general population and was validated through direct clinical observation or some form of credible evidence.Our hypotheses were partially corroborated with autistic memory experts recognizing high and low associative shapes equally well in contrast to control participants who showed superior recognition of high associative shapes. However, memory experts did not outperform control participants in the recognition of low associative shapes. There were no differences for the recognition of pseudowords.Findings do not indicate enhanced memory for nonsense material, but a failure to make use of semantic features of abstract stimuli as assumed for autism as a whole

    The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor

    Get PDF
    Photocatalytic degradation of dichloroacetic acid (DCA) was studied in a continuous-flow set-up using a titanium microreactor with an immobilized double-layered TiO2 nanoparticle/nanotube film. Chloride ions, formed during the degradation process, negatively affect the photocatalytic efficiency and at a certain concentration (approximately 0.5 mM) completely stop the reaction in the microreactor. Two proposed mechanisms of inhibition with chloride ions, competitive adsorption and photogenerated-hole scavenging, have been proposed and investigated by adsorption isotherms and electron paramagnetic resonance (EPR) measurements. The results show that chloride ions block the DCA adsorption sites on the titania surface and reduce the amount of adsorbed DCA molecules. The scavenging effect of chloride ions during photocatalysis through the formation of chlorine radicals was not detected.Slovenian Research Agency/P2-0084Slovenian Research Agency/J2-4309Slovene Human Resources Development and Scholarship Fund/Ad Futur

    Independent Eigenstates of Angular Momentum in a Quantum N-body System

    Get PDF
    The global rotational degrees of freedom in the Schr\"{o}dinger equation for an NN-body system are completely separated from the internal ones. After removing the motion of center of mass, we find a complete set of (2ℓ+1)(2\ell+1) independent base functions with the angular momentum ℓ\ell. These are homogeneous polynomials in the components of the coordinate vectors and the solutions of the Laplace equation, where the Euler angles do not appear explicitly. Any function with given angular momentum and given parity in the system can be expanded with respect to the base functions, where the coefficients are the functions of the internal variables. With the right choice of the base functions and the internal variables, we explicitly establish the equations for those functions. Only (3N-6) internal variables are involved both in the functions and in the equations. The permutation symmetry of the wave functions for identical particles is discussed.Comment: 24 pages, no figure, one Table, RevTex, Will be published in Phys. Rev. A 64, 0421xx (Oct. 2001

    Calculation of the photoionization with de-excitation cross sections of He and helium-like ions

    Full text link
    We discuss the results of the calculation of the photoionization with de-excitation of excited He and helium-like ions Li+^{+} and B3+^{3+} at high but non-relativistic photon energies ω\omega . Several lower 1S^{1}S and 3S^{3}S states are considered. We present and analyze the ratios Rd+∗R_{d}^{+\ast} of the cross sections of photoionization with de-excitation, σ(d)+∗(ω)\sigma_{(d)}^{+\ast}(\omega), and of the photo-ionization with excitation, σ+∗(ω)\sigma ^{+\ast}(\omega). The dependence of Rd+∗R_{d}^{+\ast} on the excitation of the target object and the charge of its nucleus is presented. Apart to theoretical interest, results obtained can be verified using such long living excited state as 23S2^{3}S of He.Comment: 10 pages, 6 table

    Quantum three-body system in D dimensions

    Get PDF
    The independent eigenstates of the total orbital angular momentum operators for a three-body system in an arbitrary D-dimensional space are presented by the method of group theory. The Schr\"{o}dinger equation is reduced to the generalized radial equations satisfied by the generalized radial functions with a given total orbital angular momentum denoted by a Young diagram [ÎŒ,Îœ,0,...,0][\mu,\nu,0,...,0] for the SO(D) group. Only three internal variables are involved in the functions and equations. The number of both the functions and the equations for the given angular momentum is finite and equal to (Ό−Μ+1)(\mu-\nu+1).Comment: 16 pages, no figure, RevTex, Accepted by J. Math. Phy

    Photoionization accompanied by excitation at intermediate photon energies

    Full text link
    We calculate the photoionization with excitation-to photoionization ratios for atomic helium and heliumlike ions at intermediate values of the photon energies. The final state interactions between the electrons are included in the lowest order of their Sommerfeld parameter. This enables us, in contrast to purely numerical calculations to investigate the roles of various mechanisms contributing beyond the high energy limit. The system of the two bound electrons is described by the functions obtained by the Correlation Function Hyperspherical Harmonic Method. For the case of heliumlike ions we present the high energy limits as power expansion in inverse charge of the nucleus. We analyse the role of excitation of states with the nonzero orbital momenta.Comment: 3 figure

    Acute ECG ST-segment elevation mimicking myocardial infarction in a patient with pulmonary embolism

    Get PDF
    Pulmonary embolism is a common cardiovascular emergency, but it is still often misdiagnosed due to its unspecific clinical symptoms. Elevated troponin concentrations are associated with greater morbidity and mortality in patients with pulmonary embolism. Right ventricular ischemia due to increased right ventricular afterload is believed to be underlying mechanism of elevated troponin values in acute pulmonary embolism, but a paradoxical coronary artery embolism through opened intra-artrial communication is another possible explanation as shown in our case report

    Low-lying spectrum of the Y-string three-quark potential using hyper-spherical coordinates

    Full text link
    We calculate the energies of three-quark states with definite permutation symmetry (i.e. of SU(6) multiplets) in the N=0,1,2 shells, confined by the Y-string three-quark potential. The exact Y-string potential consists of one, so-called three-string term, and three angle-dependent two-string terms. Due to this technical complication we treat the problem at three increasingly accurate levels of approximation: 1) the (approximate) three-string potential expanded to first order in trigonometric functions of hyper-spherical angles; 2) the (approximate) three-string potential to all orders in the power expansion in hyper-spherical harmonics, but without taking into account the transition(s) to two-string potentials; 3) the exact minimal-length string potential to all orders in power expansion in hyper-spherical harmonics, and taking into account the transition(s) to two-string potentials. We show the general trend of improvement %convergence of these approximations: The exact non-perturbative corrections to the total energy are of the order of one per cent, as compared with approximation 2), yet the exact energy differences between the [20,1+],[70,2+],[56,2+],[70,0+][20,1^{+}], [70,2^{+}], [56,2^{+}], [70,0^{+}]-plets are shifted to 2:2:0.9, from the Bowler and Tynemouth separation rule 2:2:1, which is obeyed by approximation 2) at the one per cent level. The precise value of the energy separation of the first radial excitation ("Roper") [56â€Č,0+][56^{\prime},0^{+}]-plet from the [70,1−][70,1^{-}]-plet depends on the approximation, but does not become negative, i.e. the "Roper" remains heavier than the odd-parity [70,1−][70,1^{-}]-plet in all of our approximations.Comment: 19 pages, 6 figure
    • 

    corecore