20 research outputs found
The prevalence of antibodies against the HLA-DRB3 protein in kidney transplantation and the correlation with HLA expression
Human leukocyte antigen (HLA)-DRB3 is a functional HLA class II gene, which has a limited allele diversity in the human population. Furthermore, the HLA-DRB3 gene is only present in a subset of individuals. Therefore, in organ transplantation, this HLA molecule is frequently mismatched between patient and graft donor and thus antibodies against this mismatched HLA molecule can develop. In this study, we aimed to evaluate the prevalence and reactivity of these antibodies and aimed to identify factors that underlie antibody formation against HLA-DRB3. We showed in our patient cohort that HLA-DRB3 antibodies are identified in about 7% of all patients that were screened with solid phase assays. In these assays, we observed multiple antibody reactivity patterns indicating that HLA-DRB3 harbours multiple epitopes. In those cases, where we succeeded at tracing back the induction of these antibodies to the molecular HLA typing of the immunogenic event, we noticed a different frequency of HLA-DRB1 allele groups in the donors as compared to a control group. To a certain extent this distribution (e.g. HLA-DRB1* 11 individuals) could be linked to an altered expression level. However, it also appears that different HLA-DRB3 alleles (e.g. HLA-DRB3* 01 group) vary in their immunogenicity without having an expression difference. In conclusion, our study provides information on the immunogenicity and reactivity patterns of antibodies against HLA-DRB3 in kidney transplantation, and it points towards the possibility of HLA expression as a factor underlying antibody formation
HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBVI Hodgkin lymphoma
Previous studies showed that the HLA class I region is associated with Epstein-Barr virus (EBV)–positive Hodgkin lymphoma (HL) and that HLA-A is the most likely candidate gene in this region. This suggests that antigenic presentation of EBV-derived peptides in the context of HLA-A is involved in the pathogenesis of EBV+ HL by precluding efficient immune responses. We genotyped exons 2 and 3, encoding the peptide-binding groove of HLA-A, for 32 single nucleotide polymorphisms in 70 patients with EBV+ HL, 31 patients with EBV– HL, and 59 control participants. HLA-A*01 was significantly overrepresented and HLA-A*02 was significantly underrepresented in patients with EBV+ HL versus controls and patients with EBV– HL. In addition, HLA-A*02 status was determined by immunohistochemistry or HLA-A*02–specific polymerase chain reaction (PCR) on 152 patients with EBV+ HL and 322 patients with EBV– HL. The percentage of HLA-A*02+ patients in the EBV+ HL group (35.5%) was significantly lower than in 6107 general control participants (53.0%) and the EBV– HL group (50.9%). Our results indicate that individuals carrying the HLA-A*02 allele have a reduced risk of developing EBV+ HL, while individuals carrying the HLA-A*01 allele have an increased risk. It is known that HLA-A*02 can present EBV-derived peptides and can evoke an effective immune response, which may explain the protective phenotype