26 research outputs found

    Age is not a limiting factor for brachytherapy for carcinoma of the node negative oral tongue in patients aged eighty or older

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To examine the role of brachytherapy for aged patients 80 or more in the trend of rapidly increasing number.</p> <p>Methods</p> <p>We examined the outcomes for elderly patients with node negative oral tongue cancer (T1-3N0M0) treated with brachytherapy. The 21 patients (2 T1, 14 T2, and 5 T3 cases) ranged in age from 80 to 89 years (median 81), and their cancer was pathologically confirmed. All patients underwent definitive radiation therapy, with low dose rate (LDR) Ra-226 brachytherapy (n = 4; median 70Gy), with Ir-192 (n = 12; 70Gy), with Au-198 (n = 1) or with high dose rate (HDR) Ir-192 brachytherapy (n = 4; 60 Gy). Eight patients also underwent external radiotherapy (median 30 Gy). The period of observation ranged from 13 months to 14 years (median 2.5 years). We selected 226 population matched younger counterpart from our medical chart.</p> <p>Results</p> <p>Definitive radiation therapy was completed for all 21 patients (100%), and acute grade 2-3 mucositis related to the therapy was tolerable. Local control (initial complete response) was attained in 19 of 21 patients (90%). The 2-year and 5-year local control rates were 91%, (100% for T1, 83% for T2 and 80% for T3 tumors after 2 years). These figures was not inferior to that of younger counterpart (82% at 5-year, n.s.). The cause-specific survival rate was 83% and the regional control rate 84% at the 2-years follow-up. However, 12 patients died because of intercurrent diseases or senility, resulting in overall survival rates of 55% at 2 years and 34% at 5 years.</p> <p>Conclusion</p> <p>Age is not a limiting factor for brachytherapy for appropriately selected elderly patients, and brachytherapy achieved good local control with acceptable morbidity.</p

    Quantitative assessment of inter-observer variability in target volume delineation on stereotactic radiotherapy treatment for pituitary adenoma and meningioma near optic tract

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess inter-observer variability in delineating target volume and organs at risk in benign tumor adjacent to optic tract as a quality assurance exercise.</p> <p>Methods</p> <p>We quantitatively analyzed 21 plans made by 11 clinicians in seven CyberKnife centers. The clinicians were provided with a raw data set (pituitary adenoma and meningioma) including clinical information, and were asked to delineate the lesions and create a treatment plan. Their contouring and plans (10 adenoma and 11 meningioma plans), were then compared. In addition, we estimated the influence of differences in contouring by superimposing the respective contours onto a default plan.</p> <p>Results</p> <p>The median planning target volume (PTV) and the ratio of the largest to the smallest contoured volume were 9.22 cm<sup>3 </sup>(range, 7.17 - 14.3 cm<sup>3</sup>) and 1.99 for pituitary adenoma, and 6.86 cm<sup>3 </sup>(range 6.05 - 14.6 cm<sup>3</sup>) and 2.41 for meningioma. PTV volume was 10.1 Ā± 1.74 cm<sup>3 </sup>for group 1 with a margin of 1 -2 mm around the CTV (n = 3) and 9.28 Ā± 1.8 cm<sup>3</sup>(p = 0.51) for group 2 with no margin (n = 7) in pituitary adenoma. In meningioma, group 1 showed larger PTV volume (10.1 Ā± 3.26 cm<sup>3</sup>) than group 2 (6.91 Ā± 0.7 cm<sup>3</sup>, p = 0.03). All submitted plan keep the irradiated dose to optic tract within the range of 50 Gy (equivalent total doses in 2 Gy fractionation). However, contours superimposed onto the dose distribution of the default plan indicated that an excessive dose 23.64 Gy (up to 268% of the default plan) in pituitary adenoma and 24.84 Gy (131% of the default plan) in meningioma to the optic nerve in the contours from different contouring.</p> <p>Conclusion</p> <p>Quality assurance revealed inter-observer variability in contour delineation and their influences on planning for pituitary adenoma and meningioma near optic tract.</p

    In Vitro and In Vivo Evaluation of Zr-89-DS-8273a as a Theranostic for Anti-Death Receptor 5 Therapy

    No full text
    Background: DS-8273a, an anti-human death receptor 5 (DR5) agonistic antibody, has cytotoxic activity against human cancer cells and induces apoptosis after specific binding to DR5. DS-8273a is currently being used in clinical Phase I trials. This study evaluated the molecular imaging of DR5 expression in vivo in mouse tumor models using SPECT/CT and PET/MRI, as a tool for drug development and trial design. Methods: DS-8273a was radiolabeled with indium-111 and zirconium-89. Radiochemical purity, immunoreactivity, antigen binding affinity and serum stability were assessed in vitro. In vivo biodistribution and pharmacokinetic studies were performed, including SPECT/CT and PET/MR imaging. A dose-escalation study using a PET/MR imaging quantitative analysis was also performed to determine DR5 receptor saturability in a mouse model. Results:111In-CHX-Aā€³-DTPA-DS-8273a and 89Zr-Df-Bz-NCS-DS-8273a showed high immunoreactivity (100%), high serum stability, and bound to DR5 expressing cells with high affinity (Ka, 1.02-1.22 Ɨ 1010 M-1). The number of antibodies bound per cell was 32,000. In vivo biodistribution studies showed high and specific uptake of 111In-CHX-Aā€³-DTPA-DS-8273a and 89Zr-Df-Bz-NCS-DS-8273a in DR5 expressing COLO205 xenografts, with no specific uptake in normal tissues or in DR5-negative CT26 xenografts. DR5 receptor saturation was observed in vivo by biodistribution studies and quantitative PET/MRI analysis. Conclusion:89Zr-Df-Bz-NCS-DS-8273a is a potential novel PET imaging reagent for human bioimaging trials, and can be used for effective dose assessment and patient response evaluation in clinical trials

    Predictive Modeling of Drug Response in Non-Hodgkin's Lymphoma.

    No full text
    We combine mathematical modeling with experiments in living mice to quantify the relative roles of intrinsic cellular vs. tissue-scale physiological contributors to chemotherapy drug resistance, which are difficult to understand solely through experimentation. Experiments in cell culture and in mice with drug-sensitive (EĀµ-myc/Arf-/-) and drug-resistant (EĀµ-myc/p53-/-) lymphoma cell lines were conducted to calibrate and validate a mechanistic mathematical model. Inputs to inform the model include tumor drug transport characteristics, such as blood volume fraction, average geometric mean blood vessel radius, drug diffusion penetration distance, and drug response in cell culture. Model results show that the drug response in mice, represented by the fraction of dead tumor volume, can be reliably predicted from these inputs. Hence, a proof-of-principle for predictive quantification of lymphoma drug therapy was established based on both cellular and tissue-scale physiological contributions. We further demonstrate that, if the in vitro cytotoxic response of a specific cancer cell line under chemotherapy is known, the model is then able to predict the treatment efficacy in vivo. Lastly, tissue blood volume fraction was determined to be the most sensitive model parameter and a primary contributor to drug resistance

    Mathematical model predicts lymphoma tumor death due to chemotherapy drug treatment.

    No full text
    <p>Comparison of histopathology measurements with mathematical model predictions (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0129433#pone.0129433.e003" target="_blank">Eq 2</a>, solid lines) based on estimates of two parameters <i>r</i><sub><i>b</i></sub> / <i>L</i> and <math><mrow><msubsup><mi>f</mi><mrow>kill</mrow>M</msubsup></mrow></math>. Data points for drug-resistant cells (blue) were scaled by 3.5 (see <b><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0129433#pone.0129433.g002" target="_blank">Fig 2A</a></b>) to be comparable with data for drug-sensitive cells (green). Obtained <i>R</i><sup>2</sup> = 0.86; estimated <math><mrow><msubsup><mi>f</mi><mrow>kill</mrow>M</msubsup></mrow></math> = 0.25, and <i>r</i><sub><i>b</i></sub> / <i>L</i> = 0.068. Diffusion distance of drug from the vessels (40 Ā± 20 Ī¼m) was assumed in the best case not to exceed half that of O<sub>2</sub>. Each point represents measurements from one tumor Set; 5 data points for the drug-sensitive cell line (green) and 6 data points for the drug-resistant cell line (blue).</p
    corecore