16 research outputs found

    Enhancement of the Josephson current by magnetic field in superconducting tunnel structures with paramagnetic spacer

    Get PDF
    The dc Josephson critical current of a (S/M)IS tunnel structure in a parallel magnetic field has been investigated (here S is a superconductor, S/M is the proximity coupled S and paramagnet M bilayer and I is an insulating barrier). We consider the case when, due to the Hund's rule, in the M metal the effective molecular interaction aligns spins of the conducting electrons antiparallel to localized spins of magnetic ions. It is predicted that for tunnel structures under consideration there are the conditions when the destructive action of the internal and the applied magnetic fields on Cooper pairs is weakened and the increase of the applied magnetic field causes the field-induced enhancement of the tunnel critical current. The experimental realization of this interesting effect of the interplay between superconductivity and magnetism is also discussed.Comment: 5 pages 3 figure

    Josephson current in a superconductor-ferromagnet junction with two non-collinear magnetic domains

    Full text link
    We study the Josephson effect in a superconductor--ferromagnet--superconductor (SFS) junction with ferromagnetic domains of non-collinear magnetization. As a model for our study we consider a diffusive junction with two ferromagnetic domains along the junction. The superconductor is assumed to be close to the critical temperature TcT_c, and the linearized Usadel equations predict a sinusoidal current-phase relation. We find analytically the critical current as a function of domain lengths and of the angle between the orientations of their magnetizations. As a function of those parameters, the junction may undergo transitions between 0 and π\pi phases. We find that the presence of domains reduces the range of junction lengths at which the π\pi phase is observed. For the junction with two domains of the same length, the π\pi phase totally disappears as soon as the misorientation angle exceeds π/2\pi/2. We further comment on possible implication of our results for experimentally observable 0--π\pi transitions in SFS junctions.Comment: 9 pages, 4 figures, minor changes, references adde

    Josephson Current in S-FIF-S Junctions: Nonmonotonic Dependence on Misorientation Angle

    Full text link
    Spectra and spin structures of Andreev interface states in S-FIF-S junctions are investigated with emphasis on finite transparency and misorientation angle between in-plane magnetizations of ferromagnetic layers in a three-layer interface. It is demonstrated that the Josephson current in S-FIF-S quantum point contacts can exhibit a nonmonotonic dependence on the misorientation angle. The characteristic behavior takes place, if the pi-state is the equilibrium state of the junction in the particular case of parallel magnetizations.Comment: 5 pages, 4 figure

    Magnetic exchange interaction induced by a Josephson current

    Full text link
    We show that a Josephson current flowing through a ferromagnet-normal-metal-ferromagnet trilayer connected to two superconducting electrodes induces an equilibrium exchange interaction between the magnetic moments of the ferromagnetic layers. The sign and magnitude of the interaction can be controlled by the phase difference between the order parameters of the two superconductors. We present a general framework to calculate the Josephson current induced magnetic exchange interaction in terms of the scattering matrices of the different layers. The effect should be observable as the periodic switching of the relative orientation of the magnetic moments of the ferromagnetic layers in the ac Josephson effect.Comment: 12 pages, 7 figure
    corecore