1,020 research outputs found
GNOSIS: Global Network Operations Status Information System
Monitoring the global state of a network is a continuing challenge for network operators and users. It has become still harder with increases in scale and heterogeneity. Monitoring requires status information for each node and to construct the global picture at a monitoring point. GNOSIS, the Global Network Operations Status Information System, achieves a global view by careful extraction and presentation of locally available node data. The GNOSIS model improves on the traditional polling model of monitoring schemes by 1.) collecting accurate data 2.) decreasing the granularity with which network applications can detect change in the network and 3.) displaying status information in near real-time.
We define the Network Snapshot as the basic unit of information capture and display in GNOSIS. A Network Snapshot is a visualization of locally available state collected during a common time interval. A sequence of these Network Snapshots over time represent the evolution of network state.
In this paper, we motivate the need for a network monitoring system that can detect global problems, in spite of both scale and heterogeneity. We present three design criteria, Accuracy, Continuity and Timeliness for a global monitoring system. Finally, we present the GNOSIS architecture and demonstrate how it better detects network problems which are currently of concern. The goal of GNOSIS is to present a stream of consistent, accurate local data in a timely manner
Agents in Network Management
The ubiquity and complexity of modern networks require automated management and control. With increases in scale, automated solutions based on simple data access models such as SNMP will give way to more distributed and algorithmic techniques. This article outlines present and near-term solutions based on the ideas of active networks and mobile agents, which permit sophisticated programmable control and management of ultra large scale networks
ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways.
Leukemia cells rely on two nucleotide biosynthetic pathways, de novo and salvage, to produce dNTPs for DNA replication. Here, using metabolomic, proteomic, and phosphoproteomic approaches, we show that inhibition of the replication stress sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) reduces the output of both de novo and salvage pathways by regulating the activity of their respective rate-limiting enzymes, ribonucleotide reductase (RNR) and deoxycytidine kinase (dCK), via distinct molecular mechanisms. Quantification of nucleotide biosynthesis in ATR-inhibited acute lymphoblastic leukemia (ALL) cells reveals substantial remaining de novo and salvage activities, and could not eliminate the disease in vivo. However, targeting these remaining activities with RNR and dCK inhibitors triggers lethal replication stress in vitro and long-term disease-free survival in mice with B-ALL, without detectable toxicity. Thus the functional interplay between alternative nucleotide biosynthetic routes and ATR provides therapeutic opportunities in leukemia and potentially other cancers.Leukemic cells depend on the nucleotide synthesis pathway to proliferate. Here the authors use metabolomics and proteomics to show that inhibition of ATR reduced the activity of these pathways thus providing a valuable therapeutic target in leukemia
Recommended from our members
Laminar backward-facing step flow using the finite element method
Laminar, incompressible flow over a backward-facing step is calculated using a finite element spatial discretization with a piecewise continuous pressure approximation and an explicit time marching algorithm. The time-accurate evolution to steady state is demonstrated for both two-dimensional (2D) and three-dimensional (3D) simulations. This approach is shown to accurately predict the lengths of the recirculation zone on the top wall and at the step for various meshes and domain lengths, for a Reynolds number of 800 based on the average inlet velocity and twice the inlet channel height. The instantaneous and steady-state results are investigated. The steady-state solutions are evaluated by comparison to published numerical and experimental results
Osp/Claudin-11 Forms a Complex with a Novel Member of the Tetraspanin Super Family and Ξ²1 Integrin and Regulates Proliferation and Migration of Oligodendrocytes
Oligodendrocyte-specific protein (OSP)/claudin-11 is a major component of central nervous system myelin and forms tight junctions (TJs) within myelin sheaths. TJs are essential for forming a paracellular barrier and have been implicated in the regulation of growth and differentiation via signal transduction pathways. We have identified an OSP/claudin-11βassociated protein (OAP)1, using a yeast two-hybrid screen. OAP-1 is a novel member of the tetraspanin superfamily, and it is widely expressed in several cell types, including oligodendrocytes. OAP-1, OSP/claudin-11, and Ξ²1 integrin form a complex as indicated by coimmunoprecipitation and confocal immunocytochemistry. Overexpression of OSP/claudin-11 or OAP-1 induced proliferation in an oligodendrocyte cell line. AntiβOAP-1, antiβOSP/claudin-11, and antiβΞ²1 integrin antibodies inhibited migration of primary oligodendrocytes, and migration was impaired in OSP/claudin-11βdeficient primary oligodendrocytes. These data suggest a role for OSP/claudin-11, OAP-1, and Ξ²1 integrin complex in regulating proliferation and migration of oligodendrocytes, a process essential for normal myelination and repair
Identification of Differentially Expressed Proteins in Murine Embryonic and Postnatal Cortical Neural Progenitors
BACKGROUND: The central nervous system (CNS) develops from a heterogeneous pool of neural stem and progenitor cells (NSPC), the underlying differences among which are poorly understood. The study of NSPC would be greatly facilitated by the identification of additional proteins that mediate their function and that would distinguish amongst different progenitor populations. METHODOLOGY/PRINCIPAL FINDINGS: To identify membrane and membrane-associated proteins expressed by NSPC, we used a proteomics approach to profile NSPC cultured as neurospheres (NS) isolated from the murine cortex during a period of neurogenesis (embryonic day 11.5, E11.5), as compared to NSPC isolated at a peak of gliogenesis (postnatal day 1, P0) and to differentiated E11.5 NS. 54 proteins were identified with high expression in E11.5 NS, including the TrkC receptor, several heterotrimeric G proteins, and the Neogenin receptor. 24 proteins were identified with similar expression in E11.5 and P0 NS over differentiated E11.5 NS, and 13 proteins were identified with high expression specifically in P0 NS compared to E11.5 NS. To illustrate the potential relevance of these identified proteins to neural stem cell biology, the function of Neogenin was further studied. Using Fluorescence Activated Cell Sorting (FACS) analysis, expression of Neogenin was associated with a self-renewing population present in both E11.5 and adult subventricular zone (SVZ) NS but not in P0 NS. E11.5 NS expressed a putative Neogenin ligand, RGMa, and underwent apoptosis when exposed to a ligand-blocking antibody. CONCLUSIONS/SIGNIFICANCE: There are fundamental differences between the continuously self-renewing and more limited progenitors of the developing cortex. We identified a subset of differentially expressed proteins that serve not only as a set of functionally important proteins, but as a useful set of markers for the subsequent analysis of NSPC. Neogenin is associated with the continuously self-renewing and neurogenic cells present in E11.5 cortical and adult SVZ NS, and the Neogenin/RGMa receptor/ligand pair may regulate cell survival during development
Current management of primary mitochondrial disorders in EU countries: the European Reference Networks survey
Background and purpose: Primary mitochondrial diseases (PMDs) are rare diseases for which diagnosis is challenging, and management and training programs are not well defined in Europe. To capture and assess care needs, five different European Reference Networks have conducted an exploratory survey. Methods: The survey covering multiple topics relating to PMDs was sent to all ERNs healthcare providers (HCPs) in Europe. Results: We have collected answers from 220 members based in 24/27 European member states and seven non-European member states. Even though most of the responders are aware of neurogenetic diseases, difficulties arise in the ability to deliver comprehensive genetic testing. While single gene analysis is widely available in Europe, whole exome and genome sequencing are not easily accessible, with considerable variation between countries and average waiting time for results frequently above 6Β months. Only 12.7% of responders were happy with the ICD-10 codes for classifying patients with PMDs discharged from the hospital, and more than 70% of them consider that PMDs deserve specific ICD codes to improve clinical management, including tailored healthcare, and for reimbursement reasons. Finally, 90% of responders declared that there is a need for further education and training in these diseases. Conclusions: This survey provides information on the current difficulties in the care of PMDs in Europe. We believe that the results of this survey are important to help rare disease stakeholders in European countries identify key care and research priorities
Recommended from our members
pH-Weighted amine chemical exchange saturation transfer echo planar imaging visualizes infiltrating glioblastoma cells
BackgroundGiven the invasive nature of glioblastoma, tumor cells exist beyond the contrast-enhancing (CE) region targeted during treatment. However, areas of non-enhancing (NE) tumors are difficult to visualize and delineate from edematous tissue. Amine chemical exchange saturation transfer echo planar imaging (CEST-EPI) is a pH-sensitive molecular magnetic resonance imaging technique that was evaluated in its ability to identify infiltrating NE tumors and prognosticate survival.MethodsIn this prospective study, CEST-EPI was obtained in 30 patients and areas with elevated CEST contrast ("CEST+" based on the asymmetry in magnetization transfer ratio: MTRasym at 3 ppm) within NE regions were quantitated. Median MTRasym at 3 ppm and volume of CESTβ
+β
NE regions were correlated with progression-free survival (PFS). In 20 samples from 14 patients, image-guided biopsies of these areas were obtained to correlate MTRasym at 3 ppm to tumor and non-tumor cell burden using immunohistochemistry.ResultsIn 15 newly diagnosed and 15 recurrent glioblastoma, higher median MTRasym at 3ppm within CESTβ
+β
NE regions (Pβ
=β
.007; Pβ
=β
.0326) and higher volumes of CESTβ
+β
NE tumor (Pβ
=β
.020; Pβ
<β
.001) were associated with decreased PFS. CE recurrence occurred in areas of preoperative CESTβ
+β
NE regions in 95.4% of patients. MTRasym at 3 ppm was correlated with presence of tumor, cell density, %Ki-67 positivity, and %CD31 positivity (Pβ
=β
.001; Pβ
<β
.001; Pβ
<β
.001; Pβ
=β
.001).ConclusionspH-weighted amine CEST-EPI allows for visualization of NE tumor, likely through surrounding acidification of the tumor microenvironment. The magnitude and volume of CESTβ
+β
NE tumor correlates with tumor cell density, degree of proliferating or "active" tumor, and PFS
- β¦