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ABSTRACT 
Laminar, incompressible flow over a backward-facing step is calculated using a finite 

element spatial discretization with a piecewise continuous pressure approximation and an 
explicit time marching algorithm. The time-accurate evolution to steady state is demon- 
strated for both two-dimensional (20) and three-dimensional (3D) simulations. This 
approach is shown to accurately predict the lengths of the recirculation zone on the top 
wall and at the step for various meshes and domain lengths, for a Reynolds number of 800 
based on the average inlet velocity and twice the inlet channel height. The instantaneous 
and steady-state results are investigated. The steady-state solutions are evaluated by com- 
parison to published numerical and experimental results. 

* This work was performed under the auspices of the US. Department of Enerby by 
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 
A 
1. Previously at Lawrence Livermore National Laboratory. 
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INTRODUCTION 
The finite element method @EM) has been used by G h g  (1990) to obtain an accu- 

rate solution for steady 2D incompmsible flow over a backward-facing step, with the 
intention to provide benchmark data in a format that can be used for testing and ebhation 
of outflow boundary conditions. However, Gartling (1990) did not investigate the effect of 
the outflow boundary conditions on the initial transient flow evolution, the effects of the 
computational channel length, or mesh grading at walls. Neither did he attempt any 3D 
simulations and thus, did not investigate possible out-of-plane effects. Using a spectral 
method, Kaiktsis et al. (1991) found 30 transient strucftues for laminar flow over a back- 
ward-facing step at Re = 800. Armaly et al. (1983) has published experimental data for a 
backward-facing step with the same expansion ratio as was modeled by Gartling (1990). 

In this paper, we consider variations in the overall flow behavior due to the computa- 
tional channel length in both the streamwise and cross-stream (out-of-plane) directions, as 
well as mesh size, mesh grading at walls, and the magnitudes of particular numerical 
parameters. Results indicating the separation and reattachment locations of the recircula- 
tion zones in the steady-state solution are presented for both 2D and 3D simulations. The 
homogeneous natural boundary conditions (zero traction), which arise directly from the 
FEM formulation, are applied at the exit plane, and we show the sensitivity of the flow 
solution to the location of this outflow boundary condition. Periodic boundary conditions 
were used on the lateral boundaries in the 3D simulations. 

GOVERNING EQUATIONS AND NUMERICAL METHOD 
In our investigation, the time-dependent incompressible Navier-Stokes equations are 

solved using an FEM approach. The incompressible Navier-Stokes equations are: 

(2) 
324 
at 
- + + ~ V V U =  -VP+uV2u+f 

where u = (uI,u2,u3) is the velocity, P = p/p where p is the pressure and p is the den- 
sity, 'U is the kinematic viscosity, andfis the body force. 

Our FEM approach is similar to that developed by Gresho et al. (1984). The computer 
code HYDRA (Christon 1995) is used to calculate the resuits presented here. Unlike the 
original investigations of Gresho et al. (19841, HYDRA allows for the use of unstructured 



meshes with one-point integration, hourglass stabilization, and balancing tensor diffisiv- 
ity (BTD) for explicit time integration. 

Using the Galerkin finite element method, the discretized continuity and momentum 
equations can be written in matrix form as 

T c u= 0 

MLri+ [ K + A ( u ) ] u + C p  -.-  = F 

(3) 

(4) 

where u is the nodal velocity vector, p is the pressure vector, ML is the lumped-mass 
matrix, K is the diffusivity, A(u) is the advection operator, C is the gradient operator, and F 
is the user-supplied natural boundary condition. For more details see Gresho (1984) and 
Christon (1995). 

In this study, the discrete pressure Poisson equation is solved in place of the continuity 
equation (3), so that continuity and momentum are decoupled and an explicit time-integra- 
tion scheme is used. The discrete Poisson equation for pressure is an approximation of the 
continuous Poisson equation. The continuous Poisson equation is derived by taking the 
divergence of the momentum equation and applying the continuity equation (1). The anal- 
ogous discrete Poisson equation is derived by multiplying the matrix form of the momen- 
tum equation (4) by C ML dt 

T -1 d T  , and since -(C u ) = 0,  we obtain 

T -1 where the coefficient matrix C M, C is a discrete approximation of the Laplacian oper- 
ator. Thus, the final discretized equations in matrix form are (4) and (5). 

To reduce computational cost, a lumped mass matrix is employed and the coefficient 
matrices are generated using one-point Gaussian quadrature. The QlPo element formula- 
tion is used which provides bilinear velocity support in 2D and trilinear support in 3D with 
piecewise constant pressure. The pressure Poisson equation is solved directly with a paral- 
lel-vector row solver (Storaasli et al. 1990) and an explicit forward Euler time integration 
scheme is used for the velocity solution. 

An additive correction (diffusivity) to the diffusion matrix balances the negative diffu- 
sion induced by explicit Euler time integration (i-e., balancing tensor diffusivity (BTD), 
Gresho et al., 1984). Also, an hour-glass correction is added to the one-point quadrature 
diffusion matrix to damp any zero energy modes that may be present because of the 
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reduced integration scheme (Goudreau and Hallquist, 1982 and Gresho et al., 1984). To 
reduce the computational effort in the evaluation of the advection term we use a ‘centroid 
advection velocity’ simplification as was done by Gresho et al. (1984). 

PROBLEM DEFINITION 
For the backward-facing step geometry, no-slip boundary conditions are imposed on 

the step and the upper and lower channel walls, a parabolic velocity profile is specifisd at 
the channel inlet, and zero natural boundary conditions are imposed at the channel outlet 
(Fig. 1). The Reynolds number (R~=UH.U) of 800 is based on the channel height of 
H = 1.0 and the average inlet velocity of U = (2Um,) /3 = 1.0 where Urn= 1.5 in 
a parabolic profile. Three different channel lengths, L = 12,15, and 30, were investigated 
in 2D. For the 3D simulations, we considered L = 12, out-plane-width W = 1, and 
enforced penodic boundary conditions on the lateral boundaries (Fig. 2). 

-.-  

The periodic boundary conditions cause a singularity in the pressure matrix which 
introduces spurious pressure modes and causes the pressure results to display a checker 
board pattern on the upper and lower no-slip channel walls. We eliminated these modes by 
using a zero traction boundary condition in the x3-direction along a single line of nodes on 
the bottom wall (Fig. 2). This action produces very small  xp3kection velocities, u3, for 
the traction nodes on the bottom wall, but their magnitude is machine zero and thus, the 
no-slip condition is satisfied. 

RESULTS 
We report numerical results for ow 2D and 3D investigations in tabular form to enable 

precise comparisons. Contour pictures are included for qualitative evaluation. Time evolu- 
tion of the flow is demonstrated with time-histories plots. Our video tape with animations 
of both 2D and 3D time-accurate simulations is complete and will be shown during our 
July 1996 presentation. 

Convergence and Comparison Criteria 

We used the points where the flow separates and reattaches for comparison in our 
parameter studies. These separation and reattachment points define the lengths of recircu- 
lation zones on the top and bottom walls. The distance I1 is the length of the major recircu- 
lation zone on the bottom wall measured from the step. The lengths 12 and Z3 are the 
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separation and reattachment positions on the top wall. We determined these lengths by 
examining the vorticity along the upper and lower walls of the channel. The flow separates 
or reattaches where the shear stress is zero and for 21) results the vorticity is zero when the 
shear stress is zero. We found the locationS of zero vorticity by interpolating between grid 
points where the Vorticity changed sign. This technique also applied when analyzing our 
3D cases because the results were perfectly 2D. 

Spatial convergence of our solutions is demonstrated from consistent separation and 
reattachment positions calculated with varioGmesh sizes. As the mesh was refined, the 
mount of change in the solution diminished. The converged solutions also exhibit smooth 
velocity profiles in high velocity gradient regions. 

Temporal convergence was determined by examining time-histories of velocity at sev- 
eral point locations in the flow. In addition, the invariance of the flow's total kinetic energy 
KE = u MLu demonstrates a time-convex-ged solution by evaluation of a global quan- 
tity. A steady solution is achieved well before the simulation time of 400, which is the 
point in time that we chose to evaluate I , ,  12, and 13. 

T 

S teady-State Solution 

Our 2D and 3D simulations evolve to a steady-state solution for Reynolds number of 
800 (Fig. 3,4, and 5), contrary to the results of Kaiktsis et al. (1991), who was not able to 
obtain a steady solution in 2D or 3D at this Reynolds number. Our 3D simulation results 
are identical to OUT 2D results. They converge to a steady solution which does not exhibit 
3D structures. Figure 6 shows the time history of the global kinetic energy which helps 
demonstrate tirne convergence. Local velocity time histories (Fig. 7 and 8) at selected 
point locations also show that time convergence to a steady state has been well achieved. 

The streamfunction contours in Fig. 3 and the pressure contours in Fig. 4 capture the 
well-known character of the backward-facing step for the steady-state 2D solution. 
Results of 3D simulatiog are more difficult to display without the use of color. We have 
chosen isosurfaces of pressure to demonstrate the steady-state 3D solution in black and 
white (Fig. 5 )  because isosurfaces of the quantities vorticity or velocity would overlap and 
prevent details from being seen.' It is clear that the 30 pressure isosurfaces of Fig. 5 have 
no variation in the x3 direction and are identical to the 2D results in Fig- 4. 

1. We will use color pictures and animation during our presentation. 



We were able to shorten the c h e l  length by a sigmficant amount which reduced the 
size of the computational domain and thus the resources required to obtain a good solu- 
tion. In Table 1, solutions are compared for three different channel lengths having the 
same uniform element size. These solutions are essentially identical because the results 
vary by less than one element size. The positions of the steady-state recirculation zones 
are relatively insensitive to the channel lengths studied here. This result reflects the ability 
of the homogeneous natural boundary condition to capture the steady-state outflow condi- 
tion. ..- 

In Table 2, we Compare our solutions for a channel length of 12, with different field 
discretizations including selected results from our investigation of graded meshes and out- 
of-plane 3D effects. Our only attempt to optimize the distribution of the elements in the 
graded meshes was to use the simple rule of grading finer in wall regions. We found very 
little change in the solution until we moved to meshes with coarse x1 discretization. 
Results for our coarsest mesh (Case €3) are only 3% different from our finest mesh (Case 
C) even though the finest has 18 times more elements. We found no difference in the solu- 
tions in going from 2D to 3D and keeping the same mesh in the x1 x x2 plane, and we 
found no variation in the 3D results for different x3-direction mesh sizes. 

Generally, the calculated lengths ZI, 12, and 13 are in good agreement with Gartling 
(1990), even though G&g used higher order approximations (9 node elements) than 
that used in our approach (4 node elements in 2D). Experimental results from Annaly et 
al. (1983) were estimated from figures in the paper and are included in Table 2. As other 
investigators have found, numerical simulations do not exactly agree with experiment. 

The solution was not affected by the chosen time step size, as long as the time step 
remained below the Courant limit. This also means that the solution was insensitive to 
BTD because BTD is proportional to time step size. The test that was performed to evalu- 
ate the influence of time step on the solution involved decreasing the time step by factors 
of 1.5 and 3 on our finest mesh (Case A) and applying our steady-state spatial convergence 
criteria. In addition, we found no effect on the reattachment positions for a factor of ten 
variation in the hourglass coefficient. 

Transient Phenomena 

Our investigation of the flow evolution exhibits a transient pressure fluctuation when 
the initial vortex reaches the exit of the computational domain at L = 12. The exiting vor- 
tex causes an abrupt change in the outlet flow, and the outflow boundary conditions must 
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quickly adjust from what is essentially a zero pressure condition at the exit p h e  to the 
low pressure vortex so that the homogeneous natural boundary condition is satisfied. The 
pressure fluctuation lasts approximately 10 time units. It affects  the entire flow field 
instantaneously, because of the effective infinite sound speed for incompressible flow. 
This feature, which is purely a Computational phenomenon, is clearly seen in our 2D and 
3D animations of pressure results. 

Computational Resources * -  

All of the cases documented in this report were run on a Silicon Graphics Power 
Indigo 2 Workstation using the parallel-vector row solver (Storaasli et al. 1990) for the 
pressure Poisson equation in HYDRA (Cbriston 1995). Table 3 Summarizes the computa- 
tional resources required to run each case. Memory requirements are dominated by the 
pressure Poisson equation and correlate with the matrix half-bandwidth. The element 
cycle time represents the number of microseconds (pa) required to advance the solution 
of one element through one time step. Total run time is the CPU time necessary to com- 
pute the steady-state solution at time = 4-00. 

There is a strong correlation between total storage (memory) required and matrix 
bandwidth, with additional storage requirements based on number of elements. As the ele- 
ment count and bandwidth decreased, so did memory. There also exists an obvious corre- 
lation between the element cycle time and the bandwidth. Cases A, B, and C have the 
same bandwidth and virtually identical cycle times. The total run time for these cases, 
however, is proportional to the element count. 

We have included this information to demonstrate the significant reduction in 
resources that was achieved by cutting the domain from L = 30 to L = 12, and in using 
coarser, graded meshes. 

CONCLUSIONS 

The finite element method with a piecewise continuous pressure approximation and an 
explicit time marching algorithm accurately solves the backward-facing step problem at a 
Reynolds number of 800. Using homogeneous natural boundary conditions allows for a 
significant reduction in the length of the computational domain and grading at the walls 
reduces the overall mesh size. These factors contribute to a reduction in the resources 
required to obtain converged results. 
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Both 2D and 3D simulations evolve to the same steady-state solution with the 3D sim- 
ulation exhibiting no 3D structures. Although the periodic boundary conditions used in the 
3D simulations can cause pressure modes, we eliminated them by the use of zero traction 
boundary conditions in the out-of-plane direction along the center line of the bottom wall. 

During the flow evolution, a pertubation in the pressure solution occurs when the ini- 
tial vortex exits the computational domain. This is due to the abrupt imposition of a strong 
vortex on the outfiow homogeneous natural boundary condition. 

..- 
This benchmark problem also provided an excellent opportunity to demonstrate the 

ability of state-of-the-art workstations to solve problems that were formerly relegated to 
main frame computers. 
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run Channel element 4 12 
no. Length,L count 
A I  30 f 128,O00* 6.03 4.90 

13 

10.37 

* mesh was uniform for 0 <xl< 15. then graded 1:2for 15 <xl < 30 as in Gartling (1990). 

B 1  15 
C I  12 

%.OOO - 6.03 4.90 I 10.37 
76,800 6.03 4.91 I 10.35 

run run Axl 
no. dim. min. 

C 2D .0125 

D 2D .0167 

E 2D .0250 

F 20 . O l Z  

G 2D .OB0 

H 2D .0167 

I 3D .0167 

J 3D .0167 

1 0  

Axl Ax2 Ax2 Ax3 xl x2 x3 element 21 12 23 
max. min. max mesh mesh mesh count 

n/a .0125 n/a n/a %O 80 n/a 76,800 6.03 4.91 10.35 

n/a .0167 n/a n/a 720 60 n/a 43,200 5.99 4.91 10.31 

n/a .0250 n/a n/a 480 40 n/a 19,200 5-90 4.91 10.22 

-025 -0125 -0250 n/a 482 44 n/a 21,208 5.94 4.82 10.32 
.050 -0250 .0417 n/a 340 32 n/a 10.880 5.80 4.82 10.18 
-178 .OB8 .0417 n/a 124 34 n/a 4216 5.83 4.76 10.21 
.178 -0209 .0417 -167 124 34 6 252% 5.83 4.76 10.21 
.178 .Om .0417 .lo0 124 34 10 42,160 5.85 4.76 10.21 

i 

Gartling (1990): k30 with 32,000 9-node elements 6.10 4.85 10.48 

Armaly et al. (1983): we estimated these results from figures in the paper 7.0 5.3 9.4 



TABLE 3. Use of Computational Resources 
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FIG. 1. PROBLEM DEFINITION FOR 2D BACKWARD-FACING STEP. 



FIG. 2. PROBLEM DEFINITION FOR 3D BACKWARD-FACING STEP. 
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Figure 3. Streamfunction contours for 2D steady-state solution in channel length 12. 

Figure 4. Pressure contours for 2D steady-state solution in channel length 12. 

Figure 5. Pressure isosurfaces for 3D steady-state solution in channel length 12. 
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F i g u r e  6. T o t a l  k i n e t i c  energy of the flow taken f r o m  results 
for Case A. 
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Figure 8 ,  Time his tory  of velocity u2 for selected nodes 
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