759 research outputs found

    SP-0602: PSMA ligands for diagnosis and therapy

    Get PDF

    Ranking ligand affinity for the DNA minor groove by experiment and simulation

    Get PDF
    The structural and thermodynamic basis for the strength and selectivity of the interactions of minor-groove binders (MGBs) with DNA is not fully understood. In 2003 we reported the first example of a thiazole containing MGB that bound in a phase shifted pattern that spanned 6 base-pairs rather than the usual 4 (for tricyclic distamycin-like compounds). Since then, using DNA footprinting, nuclear magnetic resonance spectroscopy, isothermal titration calorimetry and molecular dynamics, we have established that the flanking bases around the central 4 being read by the ligand have subtle effects on recognition. We have investigated the effect of these flanking sequences on binding and the reasons for the differences and established a computational method to rank ligand affinity against varying DNA sequences

    Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun) to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade <it>Milnesium tardigradum</it> were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress.</p> <p>Results</p> <p>In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites) and 4,378 edges (reactions). Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module) of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism) during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from monosaccharides as carbon and energy source during rehydration.</p> <p>Conclusions</p> <p>The functional module identifies relationships among changed metabolites (e.g. spermidine) and reactions and provides first insights into important altered metabolic pathways. With sparse and diverse data available, the presented integrated metabolite network approach is suitable to integrate all existing data and analyse it in a combined manner.</p

    The molecular origin of DNA-drug specificity in netropsin and distamycin.

    Full text link

    Metabolic Profiling of Heathland Plants in the Diet of Sheep

    Get PDF
    Little is known about how plant biochemistry influences the grazing behaviour of animals grazing heterogeneous vegetation communities. Furthermore, most biochemical profiles of grassland species are restricted to major nutritional characteristics. Recent developments in analytical techniques have made possible the detailed analysis of minor components, which can potentially affect animal feeding preferences, performance and health. Gas chromatography/time of flight mass spectroscopy (GC/TOF-MS) coupled with automated library annotation is ideally suited to the acquisition of detailed metabolite profiles of plant extracts (Wagner et al., 2003) and can be applied to other matrices such as blood and faeces. In this study GC/TOF-MS was used to identify metabolites within heathland plants, and to investigate which of these metabolites were present and absent within plasma and faeces from sheep consuming mixtures of these plants

    Metabolome Analysis of the Interaction Between Perennial Ryegrass (\u3cem\u3eLolium Perenne\u3c/em\u3e) and the Fungal Endophyte \u3cem\u3eNeotyphodium Lolii\u3c/em\u3e

    Get PDF
    Perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) frequently contain endophytic fungi (Neotyphodium lolii in perennial ryegrass and N. coenophialum in tall fescue). The presence of the endophyte has been shown to improve seedling vigour, persistence and drought tolerance in marginal environments as well as provide protection against some insect pests. Endophyte-infected grasses also produce a wide range of metabolites, including ergopeptine alkaloids, indole-isoprenoid lolitrems, pyrrolizidine alkaloids, and pyrrolopyrazine alkaloids. In contrast to information on alkaloids and animal toxicosis, the beneficial physiological aspects of the endophyte/grass interactions have not been well characterised. The physiological mechanisms which lead to increased plant vigour and enhanced tolerance to abiotic stresses unrelated to the reduction in pest damage to endophyte-infected grasses are unknown. Recent technological advances in metabolomics enable dynamic changes in the metabolome of an organism under varying experimental conditions to be studied. This provides opportunities for the investigation and validation of each and every detected metabolite, investigation of known metabolic pathways through searching of databases of known metabolites, molecular formula determination of unknown metabolites and creation of pathways from novel metabolites

    Autoinducers act as biological timers in Vibrio harveyi

    Get PDF
    Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations

    N-Isopropyl­benzamide

    Get PDF
    In the title compound, C10H13NO, the dihedral angle between the amide group and the phenyl ring is 30.0 (3)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into one-dimensional chains along the a axis

    Integrating social nutrition principles into the treatment of steatotic liver disease

    Get PDF
    Current treatment of metabolic dysfunction-associated steatotic liver disease (MASLD) focuses on adjusting patients’ lifestyles, including promoting weight loss and physical activity. Here, we suggest adopting a holistic preventive hepatology approach encompassing social nutrition, social prescribing and broader societal changes to facilitate individuals’ engagement with behavioural modifications
    corecore