86 research outputs found

    Hamiltonian Analysis of Poincar\'e Gauge Theory: Higher Spin Modes

    Get PDF
    We examine several higher spin modes of the Poincar\'e gauge theory (PGT) of gravity using the Hamiltonian analysis. The appearance of certain undesirable effects due to non-linear constraints in the Hamiltonian analysis are used as a test. We find that the phenomena of field activation and constraint bifurcation both exist in the pure spin 1 and the pure spin 2 modes. The coupled spin-00^- and spin-22^- modes also fail our test due to the appearance of constraint bifurcation. The ``promising'' case in the linearized theory of PGT given by Kuhfuss and Nitsch (KRNJ86) likewise does not pass. From this analysis of these specific PGT modes we conclude that an examination of such nonlinear constraint effects shows great promise as a strong test for this and other alternate theories of gravity.Comment: 30 pages, submitted to Int. J. Mod. Phys.

    Chiral fermions and torsion in the early Universe

    Get PDF
    Torsion arising from fermionic matter in the Einstein-Cartan formulation of general relativity is considered in the context of Robertson-Walker geometries and the early Universe. An ambiguity in the way torsion arising from hot fermionic matter in chiral models should be implemented is highlighted and discussed. In one interpretation, chemical potentials in chiral models can contribute to the Friedmann equation and give a negative contribution to the energy density.Comment: 5 pages revtex4; error in v1 corrected

    Perfect hypermomentum fluid: variational theory and equations of motion

    Full text link
    The variational theory of the perfect hypermomentum fluid is developed. The new type of the generalized Frenkel condition is considered. The Lagrangian density of such fluid is stated, and the equations of motion of the fluid and the Weyssenhoff-type evolution equation of the hypermomentum tensor are derived. The expressions of the matter currents of the fluid (the canonical energy-momentum 3-form, the metric stress-energy 4-form and the hypermomentum 3-form) are obtained. The Euler-type hydrodynamic equation of motion of the perfect hypermomentum fluid is derived. It is proved that the motion of the perfect fluid without hypermomentum in a metric-affine space coincides with the motion of this fluid in a Riemann space.Comment: REVTEX, 23 pages, no figure

    On certain relationships between cosmological observables in the Einstein-Cartan gravity

    Get PDF
    We show that in the Einstein-Cartan gravity it is possible to obtain a relation between Hubble's expansion and the global rotation (vorticity) of the Universe. Gravitational coupling can be reduced to dimensionless quantity of order unity, fixing the scalar mass density and the resulting negative cosmological constant at spacelike infinity. Current estimates of the expansion and rotation (see also astro-ph/9703082) of the Universe favour the massive spinning particles as candidate particles for cold and hot dark matter. Nodland and Ralston vorticity (Phys. Rev. Lett. 78 (1997) 3043) overestimates the value favoured by the Einstein-Cartan gravity for three orders of magnitude.Comment: 7 pages, LaTeX styl

    Torsion, an alternative to dark matter?

    Full text link
    We confront Einstein-Cartan's theory with the Hubble diagram. An affirmative answer to the question in the title is compatible with today's supernovae data.Comment: 14 pp, 3 figures. Version 2 matches the version published in Gen. Rel. Grav., references added. Version 3 corrects a factor 3 in Cartan's equations to become

    Big bounce from spin and torsion

    Full text link
    The Einstein-Cartan-Sciama-Kibble theory of gravity naturally extends general relativity to account for the intrinsic spin of matter. Spacetime torsion, generated by spin of Dirac fields, induces gravitational repulsion in fermionic matter at extremely high densities and prevents the formation of singularities. Accordingly, the big bang is replaced by a bounce that occurred when the energy density ϵgT4\epsilon\propto gT^4 was on the order of n2/mPl2n^2/m_\textrm{Pl}^2 (in natural units), where ngT3n\propto gT^3 is the fermion number density and gg is the number of thermal degrees of freedom. If the early Universe contained only the known standard-model particles (g100g\approx 100), then the energy density at the big bounce was about 15 times larger than the Planck energy. The minimum scale factor of the Universe (at the bounce) was about 103210^{32} times smaller than its present value, giving \approx 50 \mum. If more fermions existed in the early Universe, then the spin-torsion coupling causes a bounce at a lower energy and larger scale factor. Recent observations of high-energy photons from gamma-ray bursts indicate that spacetime may behave classically even at scales below the Planck length, supporting the classical spin-torsion mechanism of the big bounce. Such a classical bounce prevents the matter in the contracting Universe from reaching the conditions at which a quantum bounce could possibly occur.Comment: 6 pages; published versio

    Semi-Teleparallel Theories of Gravitation

    Get PDF
    A class of theories of gravitation that naturally incorporates preferred frames of reference is presented. The underlying space-time geometry consists of a partial parallelization of space-time and has properties of Riemann-Cartan as well as teleparallel geometry. Within this geometry, the kinematic quantities of preferred frames are associated with torsion fields. Using a variational method, it is shown in which way action functionals for this geometry can be constructed. For a special action the field equations are derived and the coupling to spinor fields is discussed.Comment: 14 pages, LaTe

    Four-fermion interaction from torsion as dark energy

    Full text link
    The observed small, positive cosmological constant may originate from a four-fermion interaction generated by the spin-torsion coupling in the Einstein-Cartan-Sciama-Kibble gravity if the fermions are condensing. In particular, such a condensation occurs for quark fields during the quark-gluon/hadron phase transition in the early Universe. We study how the torsion-induced four-fermion interaction is affected by adding two terms to the Dirac Lagrangian density: the parity-violating pseudoscalar density dual to the curvature tensor and a spinor-bilinear scalar density which measures the nonminimal coupling of fermions to torsion.Comment: 6 pages; published versio

    Eutectic colony formation: A phase field study

    Full text link
    Eutectic two-phase cells, also known as eutectic colonies, are commonly observed during the solidification of ternary alloys when the composition is close to a binary eutectic valley. In analogy with the solidification cells formed in dilute binary alloys, colony formation is triggered by a morphological instability of a macroscopically planar eutectic solidification front due to the rejection by both solid phases of a ternary impurity that diffuses in the liquid. Here we develop a phase-field model of a binary eutectic with a dilute ternary impurity and we investigate by dynamical simulations both the initial linear regime of this instability, and the subsequent highly nonlinear evolution of the interface that leads to fully developed two-phase cells with a spacing much larger than the lamellar spacing. We find a good overall agreement with our recent linear stability analysis [M. Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a destabilization of the front by long-wavelength modes that may be stationary or oscillatory. A fine comparison, however, reveals that the assumption commonly attributed to Cahn that lamella grow perpendicular to the envelope of the solidification front is weakly violated in the phase-field simulations. We show that, even though weak, this violation has an important quantitative effect on the stability properties of the eutectic front. We also investigate the dynamics of fully developed colonies and find that the large-scale envelope of the composite eutectic front does not converge to a steady state, but exhibits cell elimination and tip-splitting events up to the largest times simulated.Comment: 18 pages, 18 EPS figures, RevTeX twocolumn, submitted to Phys. Rev.
    corecore