59 research outputs found

    Comparison of three nudge interventions (priming, default option, and perceived variety) to promote vegetable consumption in a self-service buffet setting.

    Get PDF
    BACKGROUND: Dietary choices in out-of-home eating are key for individual as well as for public health. These dietary choices are caused by a wide array of determinants, one of which is automatic decision-making. Nudging is attracting considerable interest due to its understanding and application of heuristic biases among consumers. The aim of this study is to test and compare three nudges in promoting vegetable consumption among test persons in a food lab-based experiment. METHODS: The initial sample consisted of 88 participants recruited in Copenhagen, Denmark. Each study participant was randomly assigned to one of the three experiments: priming, default and perceived variety. The priming arm of the experiment consisted of creating a leafy environment with green plants and an odour of herbs. In the default arm of the experiment, the salad was pre-portioned into a bowl containing 200g of vegetables. The third experiment divided the pre-mixed salad into each of its components, to increase the visual variety of vegetables, yet not providing an actual increase in items. Each individual was partaking twice thus serving as her/his own control, randomly assigned to start with control or experimental setting. RESULTS: The default experiment successfully increased the energy intake from vegetables among the study participants (124 kcal vs. 90 kcal in control, p<0.01). Both the priming condition and perceived variety reduced the total energy intake among the study participants (169 kcal, p<0.01 and 124 kcal, p<0.01, respectively), mainly through a decrease in the meat-based meal component. CONCLUSIONS: Considerable progress has been made with regard to understanding the use of nudging in promoting a healthier meal composition, including increasing vegetable intake. This study suggests that the nature of a nudge-based intervention can have different effects, whether it is increasing intake of healthy components, or limiting intake of unhealthy meal components. This work has demonstrated that consumer behaviour can be influenced without restricting or providing incentives for behaviour change. The present findings have promising application to the foodservice sector

    A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    Get PDF
    We present a full-length α(1)β(2)γ(2) GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate-gated chloride channel (GluCl) from C. elegans and includes additional structural information from the prokaryotic ligand-gated ion channel ELIC in a few regions. Available mutational data of the binding sites are well explained by the model and the proposed ligand binding poses. We suggest a GABA binding mode similar to the binding mode of glutamate in the GluCl X-ray structure. Key interactions are predicted with residues α(1)R66, β(2)T202, α(1)T129, β(2)E155, β(2)Y205 and the backbone of β(2)S156. Muscimol is predicted to bind similarly, however, with minor differences rationalized with quantum mechanical energy calculations. Muscimol key interactions are predicted to be α(1)R66, β(2)T202, α(1)T129, β(2)E155, β(2)Y205 and β(2)F200. Furthermore, we argue that a water molecule could mediate further interactions between muscimol and the backbone of β(2)S156 and β(2)Y157. DZP is predicted to bind with interactions comparable to those of the agonists in the orthosteric site. The carbonyl group of DZP is predicted to interact with two threonines α(1)T206 and γ(2)T142, similar to the acidic moiety of GABA. The chlorine atom of DZP is placed near the important α(1)H101 and the N-methyl group near α(1)Y159, α(1)T206, and α(1)Y209. We present a binding mode of DZP in which the pending phenyl moiety of DZP is buried in the binding pocket and thus shielded from solvent exposure. Our full length GABA(A) receptor is made available as Model S1
    • …
    corecore