5 research outputs found

    Transcriptome-Wide Comparisons and Virulence Gene Polymorphisms of Host-Associated Genotypes of the Cnidarian Parasite Ceratonova shasta in Salmonids

    Get PDF
    Ceratonova shasta is an important myxozoan pathogen affecting the health of salmonid fishes in the Pacific Northwest of North America. Ceratonova shasta exists as a complex of host-specific genotypes, some with low to moderate virulence, and one that causes a profound, lethal infection in susceptible hosts. High throughput sequencing methods are powerful tools for discovering the genetic basis of these host/virulence differences, but deep sequencing of myxozoans has been challenging due to extremely fast molecular evolution of this group, yielding strongly divergent sequences that are difficult to identify, and unavoidable host contamination. We designed and optimized different bioinformatic pipelines to address these challenges. We obtained a unique set of comprehensive, host-free myxozoan RNA-seq data from C. shasta genotypes of varying virulence from different salmonid hosts. Analyses of transcriptome-wide genetic distances and maximum likelihood multigene phylogenies elucidated the evolutionary relationship between lineages and demonstrated the limited resolution of the established Internal Transcribed Spacer marker for C. shasta genotype identification, as this marker fails to differentiate between biologically distinct genotype II lineages from coho salmon and rainbow trout. We further analyzed the data sets based on polymorphisms in two gene groups related to virulence: cell migration and proteolytic enzymes including their inhibitors. The developed single-nucleotide polymorphism-calling pipeline identified polymorphisms between genotypes and demonstrated that variations in both motility and protease genes were associated with different levels of virulence of C. shasta in its salmonid hosts. The prospective use of proteolytic enzymes as promising candidates for targeted interventions against myxozoans in aquaculture is discussed. We developed host-free transcriptomes of a myxozoan model organism from strains that exhibited different degrees of virulence, as a unique source of data that will foster functional gene analyses and serve as a base for the development of potential therapeutics for efficient control of these parasites.Fil: Alama Bermejo, Gema. Universidad Nacional del Comahue. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni". - Provincia de Río Negro. Ministerio de Agricultura, Ganadería y Pesca. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni". Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Centro Nacional Patagónico. Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos "Almirante Storni"; Argentina. Academy of Sciences of the Czech Republic. Biology Centre. Institute of Parasitology; República Checa. State University of Oregon; Estados UnidosFil: Meyer, Eli. Oregon State University; Estados UnidosFil: Atkinson, Stephen D.. Oregon State University; Estados UnidosFil: Holzer, Astrid S.. Academy of Sciences of the Czech Republic. Biology Centre. Institute of Parasitology; República ChecaFil: Wiśniewska, Monika M.. Academy of Sciences of the Czech Republic. Biology Centre. Institute of Parasitology; República ChecaFil: Kolísko, Martin. Academy of Sciences of the Czech Republic. Biology Centre. Institute of Parasitology; República Checa. University of South Bohemia; República ChecaFil: Bartholomew, Jerri. Oregon State University; Estados Unido

    FIBRE CONCRETE 2011 EXPERIMENTAL INVESTIGATION OF I-BEAM MADE FROM UHPC

    No full text
    Abstract The experimental investigation on girder made from UHPC was provided. The results proved that the ultimate bending load depends on the casting technology, on the fibre distribution and the air pore distribution in the structure member

    Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives

    No full text
    Apicomplexans are a major lineage of parasites, including causative agents of malaria and toxoplasmosis. How such highly adapted parasites evolved from free-living ancestors is poorly understood, particularly because they contain nonphotosynthetic plastids with which they have a complex metabolic dependency. Here, we examine the origin of apicomplexan parasitism by resolving the evolutionary distribution of several key characteristics in their closest free-living relatives, photosynthetic chromerids and predatory colpodellids. Using environmental sequence data, we describe the diversity of these apicomplexan-related lineages and select five species that represent this diversity for transcriptome sequencing. Phylogenomic analysis recovered a monophyletic lineage of chromerids and colpodellids as the sister group to apicomplexans, and a complex distribution of retention versus loss for photosynthesis, plastid genomes, and plastid organelles. Reconstructing the evolution of all plastid and cytosolic metabolic pathways related to apicomplexan plastid function revealed an ancient dependency on plastid isoprenoid biosynthesis, predating the divergence of apicomplexan and dinoflagellates. Similarly, plastid genome retention is strongly linked to the retention of two genes in the plastid genome, sufB and clpC, altogether suggesting a relatively simple model for plastid retention and loss. Lastly, we examine the broader distribution of a suite of molecular characteristics previously linked to the origins of apicomplexan parasitism and find that virtually all are present in their free-living relatives. The emergence of parasitism may not be driven by acquisition of novel components, but rather by loss and modification of the existing, conserved traits

    Mitochondrion-Related Organelles in Free-Living Protists

    No full text
    Editor: Jan Tachezy: Series Editor: Alexander Steinbüchel.-- First Online: 10 August 2019.Mitochondrion-related organelles (MROs) are organelles that have independently evolved from mitochondria in eukaryotes that live in low-oxygen conditions. These organelles are functionally diverse, possessing a range of ancestrally mitochondrial or horizontally acquired biochemical pathways. Early studies of MROs focused mainly on parasitic organisms; however, the past decade has seen a growing body of work on the MROs of free-living eukaryotes based on comparative genomics, making it possible to tease apart adaptations to low-oxygen conditions from adaptations to parasitism. Here, we review current knowledge of MROs in free-living eukaryotes.Peer reviewe
    corecore