310 research outputs found
Xenon Excimer Emission From Pulsed Microhollow Cathode Discharges
By applying electrical pulses of 20 ns duration to xenon microplasmas, generated by direct current microhollow cathode discharges, we were able to increase the xenon excimer emission by more than an order of magnitude over direct current discharge excimer emission. For pulsed voltages in excess of 500 V, the optical power at 172 nm was found to increase exponentially with voltage. Largest values obtained were 2.75 W of vacuum-ultraviolet optical power emitted from a single microhollow cathode discharge in 400 Torr xenon with a 750 V pulse applied to a discharge. Highest radiative emittance was 15.2 W/cm2. The efficiency for excimer emission was found to increase linearly with pulsed voltages above 500 V reaching values of 20% at 750 V
Resonant Energy Transfer From Argon Dimers to Atomic Oxygen in Microhollow Cathode Discharges
The emission of atomic oxygen lines at 130.2 and 130.5 nm from a microhollow cathode discharge in argon with oxygen added indicates resonant energy transfer from argon dimers to oxygen atoms. The internal efficiency of the vacuum-ultraviolet (VUV) radiation was measured as 0.7% for a discharge in 1100 Torr argon with 0.1% oxygen added. The direct current VUV point source operates at voltages below 300 V and at current levels of milliamperes
Inception and propagation of positive streamers in high-purity nitrogen: effects of the voltage rise-rate
Controlling streamer morphology is important for numerous applications. Up to
now, the effect of the voltage rise rate was only studied across a wide range.
Here we show that even slight variations in the voltage rise can have
significant effects. We have studied positive streamer discharges in a 16 cm
point-plane gap in high-purity nitrogen 6.0, created by 25 kV pulses with a
duration of 130 ns. The voltage rise varies by a rise rate from 1.9 kV/ns to
2.7 kV/ns and by the first peak voltage of 22 to 28 kV. A structural link is
found between smaller discharges with a larger inception cloud caused by a
faster rising voltage. This relation is explained by the greater stability of
the inception cloud due to a faster voltage rise, causing a delay in the
destabilisation. Time-resolved measurements show that the inception cloud
propagates slower than an earlier destabilised, more filamentary discharge.
This explains that the discharge with a faster rising voltage pulse ends up to
be shorter. Furthermore, the effect of remaining background ionisation in a
pulse sequence has been studied, showing that channel thickness and branching
rate are locally affected, depending on the covered volume of the previous
discharge.Comment: 16 pages, 9 figure
Surface electrons at plasma walls
In this chapter we introduce a microscopic modelling of the surplus electrons
on the plasma wall which complements the classical description of the plasma
sheath. First we introduce a model for the electron surface layer to study the
quasistationary electron distribution and the potential at an unbiased plasma
wall. Then we calculate sticking coefficients and desorption times for electron
trapping in the image states. Finally we study how surplus electrons affect
light scattering and how charge signatures offer the possibility of a novel
charge measurement for dust grains.Comment: To appear in Complex Plasmas: Scientific Challenges and Technological
Opportunities, Editors: M. Bonitz, K. Becker, J. Lopez and H. Thomse
Propagation and Structure of Planar Streamer Fronts
Streamers often constitute the first stage of dielectric breakdown in strong
electric fields: a nonlinear ionization wave transforms a non-ionized medium
into a weakly ionized nonequilibrium plasma. New understanding of this old
phenomenon can be gained through modern concepts of (interfacial) pattern
formation. As a first step towards an effective interface description, we
determine the front width, solve the selection problem for planar fronts and
calculate their properties. Our results are in good agreement with many
features of recent three-dimensional numerical simulations.
In the present long paper, you find the physics of the model and the
interfacial approach further explained. As a first ingredient of this approach,
we here analyze planar fronts, their profile and velocity. We encounter a
selection problem, recall some knowledge about such problems and apply it to
planar streamer fronts. We make analytical predictions on the selected front
profile and velocity and confirm them numerically.
(abbreviated abstract)Comment: 23 pages, revtex, 14 ps file
Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires
The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement
- …