83 research outputs found
Repeated bedside echocardiography in children with respiratory failure
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to verify the benefits and limitations of repeated bedside echocardiographic examinations in children during mechanical ventilation. For the purposes of this study, we selected the data of over a time period from 2006 to 2010.</p> <p>Methods</p> <p>A total of 235 children, average age 3.21 (SD 1.32) years were included into the study and divided into etiopathogenic groups. High-risk groups comprised: Acute lung injury and acute respiratory distress syndrome (ALI/ARDS), return of spontaneous circulation after cardiopulmonary resuscitation (ROSC), bronchopulmonary dysplasia (BPD), cardiomyopathy (CMP) and cardiopulmonary disease (CPD). Transthoracic echocardiography was carried out during mechanical ventilation. The following data were collated for statistical evaluation: right and left ventricle myocardial performance indices (RV MPI; LV MPI), left ventricle shortening fraction (SF), cardiac output (CO), and the mitral valve ratio of peak velocity of early wave (E) to the peak velocity of active wave (A) as E/A ratio. The data was processed after a period of recovery, i.e. one hour after the introduction of invasive lines (time-1) and after 72 hours of comprehensive treatment (time-2). The overall development of parameters over time was compared within groups and between groups using the distribution-free Wilcoxons and two-way ANOVA tests.</p> <p>Results</p> <p>A total of 870 echocardiographic examinations were performed. At time-1 higher average values of RV MPI (0.34, SD 0.01 vs. 0.21, SD 0.01; p < 0.001) were found in all groups compared with reference values. Left ventricular load in the high-risk groups was expressed by a higher LV MPI (0.39, SD 0.13 vs. 0.29, SD 0.02; p < 0.01) and lower E/A ratio (0.95, SD 0.36 vs. 1.36, SD 0.64; p < 0.001), SF (0.37, SD 0.11 vs. 0.47, SD 0.02; p < 0.01) and CO (1.95, SD 0.37 vs. 2.94, SD 1.03; p < 0.01). At time-2 RV MPI were lower (0.25, SD 0.02 vs. 0.34, SD 0.01; p < 0.001), but remained higher compared with reference values (0.25, SD 0.02 vs. 0.21, SD 0.01; p < 0.05). Other parameters in high-risk groups were improved, but remained insignificantly different compared with reference values.</p> <p>Conclusion</p> <p>Echocardiography complements standard monitoring of valuable information regarding cardiac load in real time. Chest excursion during mechanical ventilation does not reduce the quality of the acquired data.</p
Development of crystalline inclusions (“ergosterol crystals”) in Neurospora crassa
Development of crystalline inclusions (“ergosterol crystals”) in “snowflake”, a morphological mutant of Neurospora crassa has been examined. The inclusions which arise in membranebound organelles appear as electron dense deposits, increase in size, and occupy nearly all the space within the organelle at maturity. The presence of catalase activity in the organelle was not detected using cytochemical procedures employing diaminobenzidine.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41731/1/709_2005_Article_BF01275681.pd
Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies
Abstract Background Bronchopulmonary dysplasia (BPD) is the result of a complex process in which several prenatal and/or postnatal factors interfere with lower respiratory tract development, leading to a severe, lifelong disease. In this review, what is presently known regarding BPD pathogenesis, its impact on long-term pulmonary morbidity and mortality and the available preventive and therapeutic strategies are discussed. Main body Bronchopulmonary dysplasia is associated with persistent lung impairment later in life, significantly impacting health services because subjects with BPD have, in most cases, frequent respiratory diseases and reductions in quality of life and life expectancy. Prematurity per se is associated with an increased risk of long-term lung problems. However, in children with BPD, impairment of pulmonary structures and function is even greater, although the characterization of long-term outcomes of BPD is difficult because the adults presently available to study have received outdated treatment. Prenatal and postnatal preventive measures are extremely important to reduce the risk of BPD. Conclusion Bronchopulmonary dysplasia is a respiratory condition that presently occurs in preterm neonates and can lead to chronic respiratory problems. Although knowledge about BPD pathogenesis has significantly increased in recent years, not all of the mechanisms that lead to lung damage are completely understood, which explains why therapeutic approaches that are theoretically effective have been only partly satisfactory or useless and, in some cases, potentially negative. However, prevention of prematurity, systematic use of nonaggressive ventilator measures, avoiding supraphysiologic oxygen exposure and administration of surfactant, caffeine and vitamin A can significantly reduce the risk of BPD development. Cell therapy is the most fascinating new measure to address the lung damage due to BPD. It is desirable that ongoing studies yield positive results to definitively solve a major clinical, social and economic problem
The Mšeno-Roudnice Basin: problems of reconstruction of fossil stream pattern (Central Bohemian Coal Basins, Czech Republic)
The Mšeno-Roudnice Coal Basin is an eastern part of the Central Bohemian Carboniferous Coal Basins. The total thickness of the Carboniferous sediments is ranging from several tens of metres in the south up to nearly 1 km in the basin centre. The basin was explored by nearly 55 deep boreholes with the aim to explore coal reserves. The seismic exploration in the basin has been carried out, too. Fossil stream pattern was reconstructed, of which rivers eroded the upper part of the Slaný Formation sediments during the intra-Stephanian hiatus between the Slaný and Líně Formation (Stephanian B/C). The project could have been realized due to some drilling close to seismic profiles, and also at least due to locally favourable seismological conditions. The results allowed to decipher the anomalous depositional structure of the Slaný and Líně formations that was difficult to be defined earlier. The results showed that some tectonic movements occurred towards the end of the Stephanian B which resulted in giving rise of erosional activity of ancient streams
Functional complementation of major histocompatibility complex class II regulatory mutants by the purified X-box-binding protein RFX.
Major histocompatibility complex (MHC) class II deficiency, or bare lymphocyte syndrome (BLS), is a disease of gene regulation. Patients with BLS have been classified into at least three complementation groups (A, B, and C) believed to correspond to three distinct MHC class II regulatory genes. The elucidation of the molecular basis for this disease will thus clarify the mechanisms controlling the complex regulation of MHC class II genes. Complementation groups B and C are characterized by a lack of binding of RFX, a nuclear protein that normally binds specifically to the X box cis-acting element present in the promoters of all MHC class II genes. We have now purified RFX to near homogeneity by affinity chromatography. Using an in vitro transcription system based on the HLA-DRA promoter, we show here that extracts from RFX-deficient cells from patients with BLS (BLS cells) in groups B and C, which are transcriptionally inactive in this assay, can be complemented to full transcriptional activity by the purified RFX. As expected, purified RFX also restores a completely normal pattern of X box-binding complexes in these mutant extracts. This provides the first direct functional evidence that RFX is an activator of MHC class II gene transcription and that its absence is indeed responsible for the regulatory defect in MHC class II gene expression in patients with BLS
Two DNA-binding proteins discriminate between the promoters of different members of the major histocompatibility complex class II multigene family.
The regulation of major histocompatibility complex (MHC) class II gene expression is a key feature of the control of normal and abnormal immune responses. In humans, class II alpha - and beta-chain genes are organized in a multigene family with three distinct subregions, HLA-DR, -DQ, and -DP. The regulation of these genes is generally coordinated, and their promoters contain highly conserved motifs, in particular the X and Y boxes. We have identified five distinct proteins that bind to specific DNA sequences within the first 145 base pairs of the HLA-DR promoter, a segment known to be functionally essential for class II gene regulation. Among these, RF-X is of special interest, since mutants affected in the regulation of MHC class II gene expression have a specific defect in RF-X binding. Unexpectedly, RF-X displays a characteristic gradient of binding affinities for the X boxes of three alpha-chain genes (DRA greater than DPA much greater than DQA). The same observation was made with recombinant RF-X. We also describe a novel factor, NF-S, which bound to the spacer region between the X and Y boxes of class II promoters. NF-S exhibited a reverse gradient of affinity compared with RF-X (DQA greater than DPA much greater than DRA). As expected, RF-X bound well to the mouse IE alpha promoter, while NF-S bound well to IA alpha. The drastic differences in the binding of RF-X and NF-S to different MHC class II promoters contrasts with the coordinate regulation of HLA-DR, -DQ, and -DP genes
- …