1,205 research outputs found

    Light Dark Matter: Models and Constraints

    Get PDF
    We study the direct detection prospects for a representative set of simplified models of sub-GeV dark matter (DM), accounting for existing terrestrial, astrophysical and cosmological constraints. We focus on dark matter lighter than an MeV, where these constraints are most stringent, and find three scenarios with accessible direct detection cross sections: (i) DM interacting via an ultralight kinetically mixed dark photon, (ii) a DM sub-component interacting with nucleons or electrons through a light scalar or vector mediator, and (iii) DM coupled with nucleons via a mediator heavier than ~ 100 keV.Comment: 44 pages, 13 figures, reference added and minor updates to some of the constraints, conclusions unchange

    Star formation in the central regions of galaxies

    Get PDF
    Massive star formation in the central regions of spiral galaxies plays an important role in the dynamical and secular evolution of their hosts. Here, we summarise a number of recent investigations of the star formation history and the physical conditions of the gas in circumnuclear regions, to illustrate not only the detailed results one can achieve, but also the potential of using state-of-the-art spectroscopic and analysis techniques in researching the central regions of galaxies in general. We review how the star formation history of nuclear rings confirms that they are long-lived and stable configurations. Gas flows in from the disk, through the bar, and into the ring, where successive episodes of massive star formation occur. Analysing the ring in NGC 7742 in particular, we determine the physical conditions of the line emitting gas using a combination of ionisation and stellar population modelling, concluding that the origin of the nuclear ring in this non-barred galaxy lies in a recent minor merger with a small gas-rich galaxy.Comment: Invited contribution, to appear in "Mapping the Galaxy and other galaxies", Eds. K. Wada and F. Combes, Springer, in pres

    A subarcsecond resolution near-infrared study of Seyfert and `normal' galaxies: II. Morphology

    Get PDF
    We present a detailed study of the bar fraction in the CfA sample of Seyfert galaxies, and in a carefully selected control sample of non-active galaxies, to investigate the relation between the presence of bars and of nuclear activity. To avoid the problems related to bar classification in the RC3, e.g., subjectivity, low resolution and contamination by dust, we have developed an objective bar classification method, which we conservatively apply to our new sub-arcsecond resolution near-infrared imaging data set (Peletier et al. 1999). We are able to use stringent criteria based on radial profiles of ellipticity and major axis position angle to determine the presence of a bar and its axial ratio. Concentrating on non-interacting galaxies in our sample for which morphological information can be obtained, we find that Seyfert hosts are barred more often (79% +/- 7.5%) than the non-active galaxies in our control sample (59% +/- 9%), a result which is at the 2.5 sigma significance level. The fraction of non-axisymmetric hosts becomes even larger when interacting galaxies are taken into account. We discuss the implications of this result for the fueling of central activity by large-scale bars. This paper improves on previous work by means of imaging at higher spatial resolution and by the use of a set of stringent criteria for bar presence, and confirms that the use of NIR is superior to optical imaging for detection of bars in disk galaxies.Comment: Latex, 3 figures, includes aaspptwo.sty, accepted for publication in the Astrophysical Journa

    Dynamics of Inner Galactic Disks: The Striking Case of M100

    Full text link
    We investigate gas dynamics in the presence of a double inner Lindblad resonance within a barred disk galaxy. Using an example of a prominent spiral, M100, we reproduce the basic central morphology, including four dominant regions of star formation corresponding to the compression maxima in the gas. These active star forming sites delineate an inner boundary (so-called nuclear ring) of a rather broad oval detected in the near infrared. We find that inclusion of self-gravitational effects in the gas is necessary in order to understand its behavior in the vicinity of the resonances and its subsequent evolution. The self-gravity of the gas is also crucial to estimate the effect of a massive nuclear ring on periodic orbits in the stellar bar.Comment: 11 pages, postscript, compressed, uuencoded. Paper and 4 figures available at ftp://pa.uky.edu/shlosman/nobel or at http://www.pa.uky.edu/~shlosman/ . Invited talk at the Centennial Nobel Symposium on "Barred Galaxies and Circumnuclear Activity," A.Sandquist et al. (Eds.), Springer-Verlag, in pres

    The extinction by dust in the outer parts of spiral galaxies

    Get PDF
    To investigate the distribution of dust in Sb and Sc galaxies we have analyzed near-infrared and optical surface photometry for an unbiased sample of 37 galaxies. Since light in the KK-band is very little affected by extinction by dust, the BKB-K colour is a good indicator of the amount of extinction, and using the colour-inclination relation we can statistically determine the extinction for an average Sb/Sc galaxy. We find in general a considerable amount of extinction in spiral galaxies in the central regions, all the way out to their effective radii. In the outer parts, at DK,21_{K,21}, or at 3 times the typical exponential scale lengths of the stellar distribution , we find a maximum optical depth of 0.5 in BB for a face-on galaxy. If we impose the condition that the dust is distributed in the same way as the stars, this upper limit would go down to 0.1.Comment: 4 pages, postscript, gzip-compressed, uuencoded, includes 2 figures. Accepted for publication in Astronomy & Astrophysics, Letter
    corecore