61 research outputs found

    V<sub>H</sub> replacement in rearranged immunoglobulin genes

    Get PDF
    Examples suggesting that all or part of the V&lt;sub&gt;H&lt;/sub&gt; segment of a rearranged V&lt;sub&gt;H&lt;/sub&gt;DJ&lt;sub&gt;H&lt;/sub&gt; may be replaced by all or part of another V&lt;sub&gt;H&lt;/sub&gt; have been appearing since the 1980s. Evidence has been presented of two rather different types of replacement. One of these has gained acceptance and has now been clearly demonstrated to occur. The other, proposed more recently, has not yet gained general acceptance because the same effect can be produced by polymerase chain reaction artefact. We review both types of replacement including a critical examination of evidence for the latter. The first type involves RAG proteins and recombination signal sequences (RSS) and occurs in immature B cells. The second was also thought to be brought about by RAG proteins and RSS. However, it has been reported in hypermutating cells which are not thought to express RAG proteins but in which activation-induced cytidine deaminase (AID) has recently been shown to initiate homologous recombination. Re-examination of the published sequences reveals AID target sites in V&lt;sub&gt;H&lt;/sub&gt;-V&lt;sub&gt;H&lt;/sub&gt; junction regions and examples that resemble gene conversion

    Gene conversion in human rearranged immunoglobulin genes

    Get PDF
    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V&lt;sub&gt;H&lt;/sub&gt; segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V&lt;sub&gt;H&lt;/sub&gt; replacements with no addition of untemplated nucleotides at the V&lt;sub&gt;H&lt;/sub&gt;–V&lt;sub&gt;H&lt;/sub&gt; joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V&lt;sub&gt;H&lt;/sub&gt; replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion

    Rearrangement and Expression of Immunoglobulin Light Chain Genes Can Precede Heavy Chain Expression during Normal B Cell Development in Mice

    Get PDF
    In mouse mutants incapable of expressing μ chains, VκJκ joints are detected in the CD43+ B cell progenitors. In agreement with these earlier results, we show by a molecular single cell analysis that 4–7% of CD43+ B cell progenitors in wild-type mice rearrange immunoglobulin (Ig)κ genes before the assembly of a productive VHDHJH joint. Thus, μ chain expression is not a prerequisite to Igκ light chain gene rearrangements in normal development. Overall, ∼15% of the total CD43+ B cell progenitor population carry Igκ gene rearrangements in wild-type mice. Together with the results obtained in the mouse mutants, these data fit a model in which CD43+ progenitors rearrange IgH and Igκ loci independently, with a seven times higher frequency in the former. In addition, we show that in B cell progenitors VκJκ joining rapidly initiates κ chain expression, irrespective of the presence of a μ chain

    Violence is rare in autism : when it does occur, is it sometimes extreme?

    Get PDF
    A small body of literature has suggested that, rather than being more likely to engage in offending or violent behaviour, individuals with autism spectrum disorder (ASD) may actually have an increased risk of being the victim rather than the perpetrator of violence (Sobsey et al., 1995). There is no evidence that people with ASD are more violent than those without ASD (Im, 2016). There is nevertheless a small subgroup of individuals with ASD who exhibit violent offending behaviours and our previous work has suggested that other factors, such as adverse childhood experiences, might be important in this subgroup (Allely et al., 2014). Fitzgerald (2015) highlights that school shootings and mass killings are not uncommonly carried out by individuals with neurodevelopmental disorders, with frequent evidence of warning indicators. The aim of the present review is to investigate this in more detail using the 73 mass shooting cases identified by Mother Jones (motherjones.com) in their database for potential ASD features. This exercise tentatively suggests evidence of ASD in six of 73 included cases (8%) which is ten times higher when compared to the prevalence of ASD found in the general population worldwide (motherjones.com). The 8% figure for individuals with ASD involved mass killings is a conservative estimate. In addition to the six cases which provide the 8% figure, there were 15 other cases with some indication of ASD. Crucially, ASD may influence, but does not cause, an individual to commit extreme violent acts such as a mass shooting episode
    corecore