840 research outputs found

    Andreev rectifier: a nonlocal conductance signature of topological phase transitions

    Full text link
    The proximity effect in hybrid superconductor-semiconductor structures, crucial for realizing Majorana edge modes, is complicated to control due to its dependence on many unknown microscopic parameters. In addition, defects can spoil the induced superconductivity locally in the proximitised system which complicates measuring global properties with a local probe. We show how to use the nonlocal conductance between two spatially separated leads to probe three global properties of a proximitised system: the bulk superconducting gap, the induced gap, and the induced coherence length. Unlike local conductance spectroscopy, nonlocal conductance measurements distinguish between non-topological zero-energy modes localized around potential inhomogeneities, and true Majorana edge modes that emerge in the topological phase. In addition, we find that the nonlocal conductance is an odd function of bias at the topological phase transition, acting as a current rectifier in the low-bias limit. More generally, we identify conditions for crossed Andreev reflection to dominate the nonlocal conductance and show how to design a Cooper pair splitter in the open regime.Comment: 11 pages, 13 figure

    The evolution of the galactic morphological types in clusters

    Get PDF
    The morphological types of galaxies in nine clusters in the redshift range 0.1<z<0.25 are derived from very good seeing images taken at the NOT and the La Silla Danish telescopes. With the purpose of investigating the evolution of the fraction of different morphological types with redshift, we compare our results with the morphological content of nine distant clusters studied by the MORPHS group, five clusters observed with HST-WFPC2 at redshift z = 0.2-0.3, and Dressler's (1980) large sample of nearby clusters. After having checked the reliability of our morphological classification both in an absolute sense and relative to the MORPHS scheme, we analyze the relative occurrence of elliptical, S0 and spiral galaxies as a function of the cluster properties and redshift. We find a large intrinsic scatter in the S0/E ratio, mostly related to the cluster morphology. In particular, in our cluster sample, clusters with a high concentration of ellipticals display a low S0/E ratio and, vice-versa, low concentration clusters have a high S0/E. At the same time, the trend of the morphological fractions and ratios with redshift clearly points to a morphological evolution: as the redshift decreases, the S0 population tends to grow at the expense of the spiral population, whereas the frequency of Es remains almost constant. We also analyze the morphology-density (MD) relation in our clusters and find that -similarly to higher redshift clusters- a good MD relation exists in the high-concentration clusters, while it is absent in the less concentrated clusters. Finally, the comparison of the MD relation in our clusters with that of the D97 sample suggests that the transformation of spirals into S0 galaxies becomes more efficient with decreasing local density.Comment: 24 pages including 11 figures and 4 tables, accepted for publication in Ap

    Photoionization and Photoelectric Loading of Barium Ion Traps

    Get PDF
    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading technique that employs an in-expensive UV epoxy curing lamp to generate photoelectrons.Comment: 5 pages, Accepted to PRA 3/20/2007 -fixed typo -clarified figure 3 caption -added reference [15

    Evolution of Galaxy morphologies in Clusters

    Get PDF
    We have studied the evolution of galaxian morphologies from ground-based, good-seeing images of 9 clusters at z=0.09-0.25. The comparison of our data with those relative to higher redshift clusters (Dressler et al. 1997) allowed us to trace for the first time the evolution of the morphological mix at a look-back time of 2-4 Gyr, finding a dependence of the observed evolutionary trends on the cluster properties.Comment: 4 pages with 2 figures in Latex-Kluwer style. To be published in the proceedings of the Granada Euroconference "The Evolution of Galaxies.I-Observational Clues

    Superconducting, Insulating, and Anomalous Metallic Regimes in a Gated Two-Dimensional Semiconductor-Superconductor Array

    Full text link
    The superconductor-insulator transition in two dimensions has been widely investigated as a paradigmatic quantum phase transition. The topic remains controversial, however, because many experiments exhibit a metallic regime with saturating low-temperature resistance, at odds with conventional theory. Here, we explore this transition in a novel, highly controllable system, a semiconductor heterostructure with epitaxial Al, patterned to form a regular array of superconducting islands connected by a gateable quantum well. Spanning nine orders of magnitude in resistance, the system exhibits regimes of superconducting, metallic, and insulating behavior, along with signatures of flux commensurability and vortex penetration. An in-plane magnetic field eliminates the metallic regime, restoring the direct superconductor-insulator transition, and improves scaling, while strongly altering the scaling exponent

    Zero-Energy Modes from Coalescing Andreev States in a Two-Dimensional Semiconductor-Superconductor Hybrid Platform

    Full text link
    We investigate zero-bias conductance peaks that arise from coalescing subgap Andreev states, consistent with emerging Majorana zero modes, in hybrid semiconductor-superconductor wires defined in a two-dimensional InAs/Al heterostructure using top-down lithography and gating. The measurements indicate a hard superconducting gap, ballistic tunneling contact, and in-plane critical fields up to 33~T. Top-down lithography allows complex geometries, branched structures, and straightforward scaling to multicomponent devices compared to structures made from assembled nanowires.Comment: Includes Supplementary Materia

    The WINGS Survey: a progress report

    Full text link
    A two-band (B and V) wide-field imaging survey of a complete, all-sky X-ray selected sample of 78 clusters in the redshift range z=0.04-0.07 is presented. The aim of this survey is to provide the astronomical community with a complete set of homogeneous, CCD-based surface photometry and morphological data of nearby cluster galaxies located within 1.5 Mpc from the cluster center. The data collection has been completed in seven observing runs at the INT and ESO-2.2m telescopes. For each cluster, photometric data of about 2500 galaxies (down to V~23) and detailed morphological information of about 600 galaxies (down to V~21) are obtained by using specially designed automatic tools. As a natural follow up of the photometric survey, we also illustrate a long term spectroscopic program we are carrying out with the WHT-WYFFOS and AAT-2dF multifiber spectrographs. Star formation rates and histories, as well as metallicity estimates will be derived for about 350 galaxies per cluster from the line indices and equivalent widths measurements, allowing us to explore the link between the spectral properties and the morphological evolution in high- to low-density environments, and across a wide range in cluster X-ray luminosities and optical properties.Comment: 12 pages, 10 eps figures, Proceedings of the SAIt Conference 200

    Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure

    Get PDF
    The prospect of coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. For instance, one route toward realizing topological matter is by coupling a 2D electron gas (2DEG) with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been hindered by interface disorder and unstable gating. Here, we report measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding multilayer devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunneling regime, overcoming the soft-gap problem in 2D superconductor-semiconductor hybrid systems. With the QPC in the open regime, we observe a first conductance plateau at 4e^2/h, as expected theoretically for a normal-QPC-superconductor structure. The realization of a hard-gap semiconductor-superconductor system that is amenable to top-down processing provides a means of fabricating scalable multicomponent hybrid systems for applications in low-dissipation electronics and topological quantum information.Comment: includes main text, supplementary information and code for simulations. Published versio

    Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks

    Full text link
    Progress in the emergent field of topological superconductivity relies on synthesis of new material combinations, combining superconductivity, low density, and spin-orbit coupling (SOC). For example, theory [1-4] indicates that the interface between a one-dimensional (1D) semiconductor (Sm) with strong SOC and a superconductor (S) hosts Majorana modes with nontrivial topological properties [5-8]. Recently, epitaxial growth of Al on InAs nanowires was shown to yield a high quality S-Sm system with uniformly transparent interfaces [9] and a hard induced gap, indicted by strongly suppressed sub gap tunneling conductance [10]. Here we report the realization of a two-dimensional (2D) InAs/InGaAs heterostructure with epitaxial Al, yielding a planar S-Sm system with structural and transport characteristics as good as the epitaxial wires. The realization of 2D epitaxial S-Sm systems represent a significant advance over wires, allowing extended networks via top-down processing. Among numerous potential applications, this new material system can serve as a platform for complex networks of topological superconductors with gate-controlled Majorana zero modes [1-4]. We demonstrate gateable Josephson junctions and a highly transparent 2D S-Sm interface based on the product of excess current and normal state resistance
    corecore