2,106 research outputs found

    Robust Unconditionally Secure Quantum Key Distribution with Two Nonorthogonal and Uninformative States

    Full text link
    We introduce a novel form of decoy-state technique to make the single-photon Bennett 1992 protocol robust against losses and noise of a communication channel. Two uninformative states are prepared by the transmitter in order to prevent the unambiguous state discrimination attack and improve the phase-error rate estimation. The presented method does not require strong reference pulses, additional electronics or extra detectors for its implementation.Comment: 7 pages, 2 figure

    Deformed Maxwell Algebras and their Realizations

    Full text link
    We study all possible deformations of the Maxwell algebra. In D=d+1\neq 3 dimensions there is only one-parameter deformation. The deformed algebra is isomorphic to so(d+1,1)\oplus so(d,1) or to so(d,2)\oplus so(d,1) depending on the signs of the deformation parameter. We construct in the dS (AdS) space a model of massive particle interacting with Abelian vector field via non-local Lorentz force. In D=2+1 the deformations depend on two parameters b and k. We construct a phase diagram, with two parts of the (b,k) plane with so(3,1)\oplus so(2,1) and so(2,2)\oplus so(2,1) algebras separated by a critical curve along which the algebra is isomorphic to Iso(2,1)\oplus so(2,1). We introduce in D=2+1 the Volkov-Akulov type model for a Abelian Goldstone-Nambu vector field described by a non-linear action containing as its bilinear term the free Chern-Simons Lagrangean.Comment: 10 pages, Talk based on [1] in the XXV-th Max Born Symposium "Planck Scale", held in Wroclaw 29.06-3.07.200

    Unconditionally Secure Key Distribution Based on Two Nonorthogonal States

    Full text link
    We prove the unconditional security of the Bennett 1992 protocol, by using a reduction to an entanglement distillation protocol initiated by a local filtering process. The bit errors and the phase errors are correlated after the filtering, and we can bound the amount of phase errors from the observed bit errors by an estimation method involving nonorthogonal measurements. The angle between the two states shows a trade-off between accuracy of the estimation and robustness to noises.Comment: 5 pages, 1 figur

    Quantum circuit for security proof of quantum key distribution without encryption of error syndrome and noisy processing

    Full text link
    One of the simplest security proofs of quantum key distribution is based on the so-called complementarity scenario, which involves the complementarity control of an actual protocol and a virtual protocol [M. Koashi, e-print arXiv:0704.3661 (2007)]. The existing virtual protocol has a limitation in classical postprocessing, i.e., the syndrome for the error-correction step has to be encrypted. In this paper, we remove this limitation by constructing a quantum circuit for the virtual protocol. Moreover, our circuit with a shield system gives an intuitive proof of why adding noise to the sifted key increases the bit error rate threshold in the general case in which one of the parties does not possess a qubit. Thus, our circuit bridges the simple proof and the use of wider classes of classical postprocessing.Comment: 8 pages, 2 figures. Typo correcte

    Unconditional security of the Bennett 1992 quantum key-distribution scheme with strong reference pulse

    Full text link
    We prove the unconditional security of the original Bennett 1992 protocol with strong reference pulse. We show that we may place a projection onto suitably defined qubit spaces before the receiver, which makes the analysis as simple as qubit-based protocols. Unlike the single-photon-based qubits, the qubits identified in this scheme are almost surely detected by the receiver even after a lossy channel. This leads to the key generation rate that is proportional to the channel transmission rate for proper choices of experimental parameters.Comment: More detailed presentation and a bit modified security proo

    Unconditional Security of Single-Photon Differential Phase Shift Quantum Key Distribution

    Full text link
    In this Letter, we prove the unconditional security of single-photon differential phase shift quantum key distribution (DPS-QKD) protocol, based on the conversion to an equivalent entanglement-based protocol. We estimate the upper bound of the phase error rate from the bit error rate, and show that DPS-QKD can generate unconditionally secure key when the bit error rate is not greater than 4.12%. This proof is the first step to the unconditional security proof of coherent state DPS-QKD.Comment: 5 pages, 2 figures; shorten the length, improve clarity, and correct typos; accepted for publication in Physical Review Letter

    Strength and Ductility of Reinforced High Strength Concrete Beams

    Get PDF
    Complete stress-strain curves for different concrete strengths up to 920 ㎏/㎠ were measured, and the coefficients of stress block were calculated. Meanwhile, a total number of 1 14 reinforced concrete beams, made with normal or high strength concrete, were tested in shear and flexure. It is shown that though high strength concrete is less ductile than normal strength concrete, reinforced concrete beams made with high strength concrete can show more ductility than might be expected from the ductility of concrete itself. Also, the influences of different factors such as shear span to depth ratio, reinforcement ratio and cross-section on the strength of singly reinforced high strength concrete beams are discussed

    Algorithms for FFT Beamforming Radio Interferometers

    Full text link
    Radio interferometers consisting of identical antennas arranged on a regular lattice permit fast Fourier transform beamforming, which reduces the correlation cost from O(n2)\mathcal{O}(n^2) in the number of antennas to O(nlogn)\mathcal{O}(n\log n). We develop a formalism for describing this process and apply this formalism to derive a number of algorithms with a range of observational applications. These include algorithms for forming arbitrarily pointed tied-array beams from the regularly spaced Fourier-transform formed beams, sculpting the beams to suppress sidelobes while only losing percent-level sensitivity, and optimally estimating the position of a detected source from its observed brightness in the set of beams. We also discuss the effect that correlations in the visibility-space noise, due to cross-talk and sky contributions, have on the optimality of Fourier transform beamforming, showing that it does not strictly preserve the sky information of the n2n^2 correlation, even for an idealized array. Our results have applications to a number of upcoming interferometers, in particular the Canadian Hydrogen Intensity Mapping Experiment--Fast Radio Burst (CHIME/FRB) project.Comment: 17 pages, 4 figures, accepted to Ap
    corecore