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Abstract

In this paper, we present a genetic algorithm-based methodology to quantify agricultural and water management practices from

remote sensing (RS) data in a mixed-pixel environment. First, we formulated a linear mixture model for low spatial resolution RS

data where we considered three agricultural land uses as dominant inside the pixel—rainfed, irrigated with two, and three croppings

a year; the mixing parameters we considered were the sowing dates, area fractions of agricultural land uses in the pixel, and their

corresponding water management practices. Then, we carried out numerical experiments to evaluate the feasibility of the proposed

approach. In the process, the mixing parameters were parameterized by data assimilation using evapotranspiration and leaf area

index as conditioning criteria. The soil–water–atmosphere–plant system model SWAP was used to simulate the dynamics of these

two biophysical variables in the pixel. The results of our numerical experiments showed that it is possible to derive some sub-pixel

information from low spatial resolution data e.g. the existing agricultural and water management practices in a region, which are

relevant for regional agricultural monitoring programs.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Remote sensing (RS) is very promising in monitoring

agricultural and water management activities because

both the spatial and temporal characteristics of a region
can be easily accounted for by satellite imageries [14]. As

a result, seasonal change of vegetation activities at the

regional level can be monitored reasonably well helping
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policy makers and farm/water managers make better

operational decisions.

Generally, crop monitoring with RS is a two-step ap-

proach in practice—first, deriving simplified relational

models for spatial analysis by relating vegetation indices
(e.g. the normalized difference vegetation index, soil ad-

justed vegetation index etc.) and observed crop parame-

ters (e.g. crop age, yield, leaf area index etc.) from

selected training areas, then applying these models to

the RS image to determine the spatial conditions of

the crops in the region. This is rather a static approach

and not readily adoptable to environments different

from where the relational models are developed (e.g.
[40,41,30]). There is also a temporal scale limitation un-

less a multi-temporal model is developed for this
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purpose, e.g. per crop development stage. These models

commonly use high spatial resolution RS data for crop

monitoring. High spatial resolution data applications,

however, are limited for larger domains because of sev-

eral reasons—their spatial coverage is limited, they have

low frequency of data acquisition, the uncertainty of
cloud-free images during a cropping season and their

high cost [34,35].

Several studies have developed methodologies to im-

prove the temporal resolution of data when using high

spatial resolution data for agricultural and water man-

agement applications. A dynamic approach called RS-

simulation modeling, which explores the synergy of RS

and simulation models, has been proposed. In this ap-
proach, RS derived information, e.g. evapotranspiration

(ET) or leaf area index (LAI), are used to steer the sim-

ulation models to determine the site specific initial and

boundary conditions for their applications in the field

or region (e.g. [7,8,11,14,19], among others). Using this

approach, a temporal resolution as fine as one day is

possible for in-depth analysis. Moreover, the RS-simula-

tion modeling is not only limited to crop monitoring but
also has potentials for crop forecasting [20].

Although the combined RS-simulation model ap-

proach appears to be very promising for monitoring

agricultural and water management activities, there is

still a need to address the problem of high spatial reso-

lution data availability in a cropping season. Is there en-

ough data available for reasonable RS-simulation

modeling? Some studies have tackled this question by
exploring the sensitivity of the physical properties of a

hydrologic system with remotely sensed data to infer if

timing of data acquisition could help resolve the prob-

lem on data limitation. Jhorar et al. [22] found that soil

hydraulic parameters are highly sensitive to ET during

periods of water stress. Ines and Droogers [20] applied

this idea in deciding which Landsat7 ETM+ images to

use in their study and based on their results, corrobo-
rated the finding of Jhorar et al. [22].

But if we develop further the approach for opera-

tional use, a careful consideration of cost is necessary.

In view of this, using low spatial resolution RS data

may be a practical alternative for RS-simulation model-

ing. Low spatial resolution data have attributes that

clearly outweigh the limitations associated with the use

of high spatial resolution data for larger scale agricul-
tural monitoring—they have higher temporal resolution

and wider spatial coverage, and minimal cost [34]. In

fact, there exist public domain standard data products

on the Internet e.g. MODIS-LAI, which are available

at both daily and composite time scales. Moreover, the

scan line correction problem that afflicted Landsat7 in

providing high quality RS data has resulted to an

increasing interest on the use of moderate or low spatial
resolution data for agro-hydrological studies, thus war-

rants further their exploration in this regard. One big
challenge, however, is the problem of mixing inside a

pixel (the basic unit in an RS image). Since the spatial

resolution is coarser, several agricultural land uses could

be embedded in one pixel.

This opens a research avenue for low spatial resolu-

tion RS data in agricultural monitoring. In the litera-
ture, the mixed-pixel problem with low spatial

resolution data has been extensively studied, but not pri-

marily for agricultural and water management applica-

tions. Shimabukuro and Smith [32] earlier proposed a

least squares mixing model to generate fraction images

from RS multi-spectral data. This method has been ap-

plied and improved significantly yielding promising re-

sults (e.g. [17,29,2,4,32], among others). Kerdiles and
Grondona [23] used the method to produce fraction

images of crops and pastures, and concluded that its

application to crop monitoring is highly promising.

But in agricultural monitoring programs, crop area frac-

tions are only part of the required information. Other

data such as agricultural and water management prac-

tices are vital and needed to devise strategies that could

improve the overall performance of the agricultural sys-
tem. The question is: Is it possible to derive from low

spatial resolution data sowing dates, irrigation dates

and frequency, expected yields, etc.?

The objective of this study is to develop a method to

quantify agricultural and water management practices

from low spatial resolution data using the combined

RS-simulation model approach (see [20]). It is based

upon the hypothesis that with the wealth of information
embedded in low spatial resolution data, it is possible to

derive such information at the sub-pixel level.
2. Materials and methods

2.1. Mixed-pixel model formulation

The most practical way to solve mixing in the pixel is

by assuming it as a linear mixture problem. In RS, linear

mixture models are generally formulated at the spectral

level. It is assumed that the average reflectance in a spec-

tral band is equal to the sum of the products of the area

fractions of each component and their corresponding

standard reflectance in that part of the spectrum, plus

an error term. The sum of the area fractions should be
equal to 1; the standard reflectance can be derived either

from spectral libraries, endmember determination, or di-

rectly from higher resolution data. The linear mixture

model is usually solved using a constrained least squares

optimization (see [32], [17,2,4]). Other methods used di-

rect information from higher resolution data to derive

linear downscaling models for extrapolation from coar-

ser resolution data; the vegetation–soil–water index
works well with this approach [34,35]. Norman et al. [28]

successfully disaggregated energy fluxes from coarser
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scale data based on the concept of blending height and

downscaling scheme using information from high spatial

resolution data. In this section, we present a linear mix-

ture model based on temporal integration of derived RS

data e.g. [12]. The formulation is limited to agricultural

applications.
At the pixel level, the RS data can be mixed, it could

be composed of signatures coming from several land

features such as a variety of crops, bare soil etc. It is well

known in the literature that the observed signatures

from RS are somewhat directly related to the activities

on the ground ([19,14], among others). Exploring this

dependency could give light to the features of the pixel

or group of pixels under study.
Let us denote the spatial features in a pixel as i.

Assuming that there are three significant agricultural

land uses (classes) in a region of interest, i.e. rainfed

(i = 1), irrigated with two croppings a year (i = 2) and

irrigated with three croppings a year (i = 3). Then a

time series of a system variable e.g. evapotranspiration

(ET) in a mixed-pixel environment can be defined as:

ETtpðkpÞ ¼
Xm
i¼1

aipETtip 8t; 8p ð1Þ

kp ¼ fsdj¼1;g; ai¼1;mgp 8p ð2Þ

where, kp is a vector of sensitive parameters significantly

influencing the temporal behavior of ET, e.g. date of

sowing (sdj) and area fraction (ai) of an agricultural class

in pixel p (see Eq. (2)); m stands for the maximum pos-

sible number of agricultural classes in a pixel (here,

m = 3); ETtip is an instantaneous component of ET at

time t, under class i, in pixel p; j is the index for date

of sowing, which has a maximum possible value of g
in this case six (6), i.e. one date for rainfed (j = 1);

two, for irrigated with two croppings (j = 2,3); and three

dates for irrigated with three croppings in a year

(j = 4,5,6).

The possible components of the mixed signature in

Eq. (1) can be defined as in Eqs. (3)–(5) considering tim-

ing of sowing as the most dominant factor in defining

the shape of the individual series:

ETt1p ¼ ETðsd1Þp 8t; 8p ð3Þ

ETt2p ¼ ETðsd2; sd3Þp 8t; 8p ð4Þ

ETt3p ¼ ETðsd4; sd5; sd6Þp 8t; 8p ð5Þ

where ET(sdj. . .) can be derived from a simulation

model. These are the individual signatures in a pixel that
are of prime interests in solving the mixing problem.

Note further that the shape of Eq. (1) depicts the spatial

features (both mixing and activities) in a pixel. We will

exploit the shape of the curve later to determine vector

kp.
2.2. Un-mixing algorithm

2.2.1. Formulation

The mixed-pixel problem in low spatial resolution RS

data is a typical optimization problem where true values

of the mixing parameters k have to be determined to
optimize an objective while satisfying a set of con-

straints. This section presents an un-mixing algorithm

for one pixel considering agricultural practices as the

dominant factor in determining the shape of Eq. (1).

Later, in this paper, we will extend the problem to in-

clude water management practices as additional mixing

parameters.

The objective function can be defined as:

ObjðkÞMin ¼ Min
1

n

Xn
t¼1

jETtðkÞ � ET̂tj
( )

ð6Þ

Subject to these constraints:

(a) Range of sowing dates

bminj 6 sdj 6 bmaxj 8j ð7Þ

(b) Constraints to avoid cropping overlaps

sdj � sdj�1 P 100 days ðj ¼ 3; 5; 6Þ ð8Þ
(c) Sum of the area fractionsXm

i¼1

ai ¼ 1:0 ð9Þ

(d) Range of area fractions

0 6 ai 6 1:0 8i ð10Þ

where ET̂t is the measured ET from RS at time t (mixed

data); ETt(k) is an estimated ET given k; Min means the

objective function (Obj) should be minimized; n is the

time domain. Eq. (8) forces the gap between the sowing

dates to be greater than or equal to 100 days to allow

full maturity of the previous crop before the start of

the next cropping season. This constraint is applicable
only to irrigated areas with two and three croppings a

year.

2.2.2. Simulation model

The un-mixing algorithm we implemented here uses

the combined RS-simulation model approach where in

real situations the time series of ET or LAI can be sim-

ulated and compared with RS measurements. We used
the soil–water–atmosphere–plant model SWAP to simu-

late the processes of the three agricultural land uses we

considered in the pixel, i.e. rainfed, irrigated with two,

and three croppings a year.

SWAP is a physically based, field scale, agro-hydro-

logical model that simulates the processes occurring in

the soil–water–crop–atmosphere–system [37]. The core

of the model is the 1D-Richards� equation, where verti-
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cal soil water movement is calculated from the spatial

and temporal potential differences in the soil column.

The soil hydraulic functions are defined by the Mua-

lem–Van Genuchten equations [27,38], which describe

the capacity of the soil to store, release and transmit

water under different environmental and boundary
conditions.

SWAP can account for several combinations of the

top and bottom boundary conditions. It is equipped

with crop models including WOFOST [33], which we

used in modeling crop growth, and water management

modules for irrigation and drainage studies. The model

simulates both the soil–water quantity and quality with

a temporal resolution of one day, along with other state
variables.

The potential evapotranspiration (ETpot) is calcu-

lated by Penman–Montieth equation. The potential

transpiration (Tpot) and soil evaporation (Epot) are par-

titioned from ETpot using LAI or the soil cover fraction.

As the soil dries, the model reduces ETpot into ETact (ac-

tual ET) where the Epot component is reduced to Eact

according to some established empirical relationships
e.g. [5,6] or by using Darcy�s law in the soil surface,

and a water stress reduction factor is applied to reduce

Tpot into Tact. The model is well validated under differ-

ent climatic and environmental conditions (see

[39,15,36,31], among others).

2.2.3. Genetic algorithms

The problem presented above is highly combinatorial
in nature. A robust search and optimization procedure,

not easily trapped to local optima in the search surface,

is necessary for successful implementation. In this study,

we have selected genetic algorithm (GA) to solve the

mixed-pixel problem.

GAs are search algorithms based on the mechanics of

nature, they combine survival of the fittest among string

structures with a structured yet randomized information
exchange to arrive at a solution [16,18]. The unknown

variables are coded as a set of binary sub-strings (in bin-

ary GA) to form a string structure called a chromosome.

The bits (0s and 1s) arrangement in the chromosome is a

possible combination of the unknown variables and can

be a solution to the problem. The process starts by ini-

tially generating a set of chromosomes (called a popula-

tion), which are then evaluated individually to determine
their suitability based on a fitness function. After this,

they undergo through the process of selection. Based

on their suitability, they compete to be selected for the

mating pool. The fitter chromosomes survive, the weaker

dies. The survivors participate in generating the new off-

spring for the next generation. The selected chromo-

somes (parents) randomly unite and exchange genetic

information through the process of crossover to produce
offspring. The resulting new chromosomes (now off-

spring) are subjected to mutation to randomly infuse
new genetic materials in the new generation. Random

mutation is necessary to restore some genetic materials

lost due to ‘‘genetic drift’’. Crossover and mutation

are controlled by their respective probability values

(e.g. pcross, pmutate). If a random number generated is less

than or equal to pcross, crossover happens, otherwise,
not. If no crossover occurs the parents enter into the

new generation and participate further in the process.

Mutation also occurs if a generated random number

during the mutation process is less than or equal to

pmutate. The process of selection, crossover and mutation

are repeated for many generations to arrive at the best

possible solution.

In this study, we have used a modified-lGA to solve
the mixed-pixel problem. A conventional lGA uses mi-

cro-population to sample the search space and restarts

when converges along the generations, no mutation is

allowed [25]. The modified-lGA is a variant that intro-

duces creep mutation to randomly alter the sub-strings

of a chromosome, and the criterion for restarting set

higher to increase the rate of population restarts, rela-

tively increasing the infusion rate of new genetic materi-
als in the process. During restart, the elite chromosome

is preserved and the rest of the population are randomly

generated (see [21,9]). Some of the GA variant operators

we used are described below:

Selection. The selection method we used is a binary

tournament selection with shuffling. Before the selection

process, the positions of the chromosomes in the popu-

lation are randomly shuffled such that a chromosome at
position 2, for instance, can be transferred to position 5,

vice versa. The binary tournament proceeds by selecting

two chromosomes (hence the term binary) from the

shuffled population then the selected chromosomes com-

pete for a position in the mating pool according to their

fitness. The chromosome with a higher fitness value wins

and joins the mating pool.

Creep mutation. Creep mutation (pcreep) is a variant of
mutation that occurs at the real space (base 10). The

binary sub-strings are mutated between their mini-

mum and maximum values, i.e. the extent of the search

space for a particular variable. Unlike jump mutation

(pmutate), which happens at the binary space (i.e. bit by

bit random mutation), lesser perturbation is introduced

to the micro-population compromising not from restart-

ing along the generations.
Restarting micro-population. The idea behind the

restarting micro-population is to increase the sampling

of the global search space even with a smaller popula-

tion. This happens when the criterion for restarting is

achieved along the generations. Usually, this is quanti-

fied by the degree of dissimilarity of the bits positions

in the population. For example, if all of the chromo-

somes are not similar by only 5% (i.e. 95% similarity)
after a generation then the population restarts. Another

implication is that, the solution is achieved faster than
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with the conventional notion of a population in simple

GA.

Elitism. The structure of the elite chromosome is

important in the search process because it contains some

of the primordial ingredients of the solution. Thus, in an

elitist GA, the best chromosome in the past generation
has a secured position for the next generation. Regard-

less if the micro-population is restarting or not, the elite

chromosome is always generated in the new population

with its position randomly selected. During restart, how-

ever, it always occupies the first position in the

population.

2.2.3.1. GA implementation.We implemented two uncon-
strained forms of the optimization problem (Eqs. (6)–

(10)) in GA, the classic penalty method (CPM) of

Goldberg [16]—Eq. (11) and a modified one (MPM)

by Chan-Hilton and Culver [10]—Eq. (12).

ZðkÞMin ¼ Min
1

n

Xn
t¼1

jETtðkÞ � ET̂tj þ Penalty

( )
ð11Þ

ZðkÞMin ¼ Min
1

n

Xn
t¼1

jETtðkÞ � ET̂tj � ð1þ PenaltyÞ
( )

ð12Þ
where penalty is expressed as:

Penalty¼
X4
h¼1

khUh; h is a running index for constraints

ð13Þ
where

Uh ¼ ðsdj � sdj�1 � 100Þ2 ðh ¼ 1; 2; 3; j ¼ 3; 5; 6Þ
ð14Þ

Uh ¼ 1�
Xm
i¼1

ai

( )2

ðh ¼ 4Þ ð15Þ

kh is a penalty coefficient for all h.

Eq. (14) is applied only to the irrigated areas with

multiple croppings a year.

If a chromosome (denoted by p) violates any of the

constraints (sowing date overlap and area fractions),

respective penalties are imposed using the following

rules (Eqs. (16) and (17)):

if ðsdj � sdj�1 � 100 P 0Þ; kh ¼ 0 otherwise 10

ðh ¼ 1; 2; 3; j ¼ 3; 5; 6Þ ð16Þ
Fig. 1. A binary representation of a chromoso
and

if 1�
Xm
i¼1

ai 6¼ 0

 !
; kh ¼ 20 otherwise 0 ðh ¼ 4Þ

ð17Þ
Finally, the measure of a chromosome is quantified by

the fitness function defined in Eq. (18):

fitnessðpÞMax ¼
1

ZðkÞ ð18Þ

fitness (p) is maximized if Z(k) is minimized (see Eqs.

(11) and (12)), which is basically our aim; chromosome

p is defined below.

For sowing dates and area fractions determination,
the chromosomes consist only of eight binary sub-

strings because a3 can be expressed in a1 and a2, i.e.

a3 = 1 � (a1 + a2), reducing the length of the string (see

[26]). The chromosome then is expressed as:

p ¼ fsdj¼1;g; ai¼1;2g ð19Þ
hence k = {p,ai = 3}, which means that p is the only com-

ponent of k that is explicitly propagated in GA. We

coded Eq. (19) as a binary string structure wherein all in-
cluded mixing parameters in the chromosome are coded

as binary sub-strings, as shown in Fig. 1. Eq. (20) con-

catenates the binary representation (base 2) of the

parameter to its decimal form (base 10), where CMax

and CMin correspond to the maximum range of the mix-

ing parameter q (an element of p); C is the decimal value

of a binary sub-string q; Lq is the length of the sub-string

q; b is the bit value—either 0 or 1 at position ‘ in the
sub-string.

CðqÞ ¼ CMinðqÞ þ ½CMaxðqÞ � CMinðqÞ�
PLq

‘¼1b‘2
‘�1

2Lq � 1
8q

ð20Þ

When water management practices are included as mix-

ing parameters, the chromosomes are extended to this

structure, p = {sdj=1,g,ai=1,2,wi=2,3}.

2.3. Numerical experiments

2.3.1. Numerical data

This study is the first stage of our effort to develop

a methodology that can be practically applied to crop

monitoring using low spatial resolution data. For this

reason, we chose to use numerical experiments in test-

ing the proposed approach to understand better its

strengths and limitations. First, we simulated ET and
me in GA for the mixed-pixel problem.



Table 1

Soil input parameters used in the simulations [21]

Soil hydraulic

parametersa
Layer 1 (0–60 cm)

30.5%–50.1%–19.4%

(S–Si–Cl)

Layer 2 (60–200 cm)

29.0%–48.8%–22.2%

a 0.02100 0.01800

k �2.5230 �3.9970

hres 0.000 0.000

hsat 0.384 0.365

Ksat 15.282 10.188

n 1.2080 1.1370

Note: hres—residual water content (cm3 cm�3); hsat—saturated water
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LAI for each agricultural land use with SWAP by

assuming realistic values of the mixing parameters in

the simulations. Then, we mixed the generated data

from each land use to come up with the ‘‘observed’’

satellite data. The mixing parameters were estimated

back using the proposed approach above. Several
studies have used a similar procedure because they

can easily control the externalities affecting the data

and the uncertainties in the analysis, allowing them

to understand better the processes involved (e.g. [24],

[1,22]).

contents (cm3 cm�3); a (cm�1), n (–)—shape parameters of the soil

water retention curve; k (–) is a shape parameter of the hydraulic

conductivity function; Ksat—saturated hydraulic conductivity (cm d�1)

[for the Mualem–Van Genuchten equations]; S–Si–Cl—% of sand, silt

and clay.
a Derived using pedo-transfer functions [13].
2.3.1.1. SWAP input data. Fig. 2 shows the daily data of

solar radiation (SRAD), maximum and minimum tem-
perature (TMAX, TMIN), wind speed and humidity

used in running SWAP. The weather data were taken

from the Asian Institute of Technology (AIT) weather

database similar to that being developed for a proposed

crop-monitoring project in Thailand. Table 1 shows the

soil data used in the simulations. The depth of soil col-

umn considered is 200 cm partitioned into two layers,

and discretized into a total of 33 compartments with a
finer division at the top 10 cm from the soil surface.

The crop we considered here is hypothetical, parameter-

ized in WOFOST.
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Fig. 2. Daily weather data used in the study.
2.3.1.2. Initial and boundary conditions. In the simula-

tions, we assumed the initial wetness of the soil column

to be at equilibrium condition. The top boundary condi-

tion (i.e. either infiltration or evaporation) is decided by

SWAP during run-time based on a built-in decision tree

[37]. While the groundwater level is a major determinant

in the water balance, we did not consider in this example

to simplify and speed up the calculations in SWAP. We
considered the soil column to be well drained in the

simulations.

2.3.1.3. Simulated agricultural land uses. As we have dis-

cussed earlier, we assumed three specific land uses to

dominate the landscape in an agricultural region for

illustration purposes: (i) rainfed agriculture (rainfed),

(ii) irrigated with two croppings a year (irrigated_2)
and (iii) irrigated with three croppings a year

(irrigated_3).

Table 2a shows the true values of agricultural and

water management practices we used in simulating the

three agricultural land uses in the pixel. The mixing

parameters considered are the sowing dates sd1 . . . sd6
in day of year (DOY), area fractions a1 . . .a3 and water

management practices w2 and w3 (see also Section 2.1
for definition of indices). The mixing variable a3 is calcu-

lated from a1 and a2 knowing that the sum of the three

area fractions is 1.0.

The water management practices in each irrigated

land use could vary for each cropping season but for

simplicity sake we assumed a standard irrigation cycle

for the rest of the year, meaning that the criterion used

for applying water in the first cropping season is prac-
ticed for the rest of the year. In this study, we used a

minimum allowable ratio of Tact/Tpot = 0.75 to indicate

the timing of irrigation. We assumed a depth of irriga-

tion of 100 mm per application, which is a conservative

estimate for flooded irrigation. This means that when



Table 2

(a) Agricultural and water management variables and their represen-

tations in the genetic algorithm. (b) Summary of genetic algorithm

parameters used in this study

(a)

Variables True values Search space No. of bits

Min. values Max. values

sd1 141 120 183 6

sd2 32 1 64 6

sd3 186 140 203 6

sd4 1 1 64 6

sd5 121 90 253 6

sd6 248 230 293 6

a1 0.15 0.0 1.0 9

a2 0.50 0.0 1.0 9

a3
a 0.35 – – –

w2
b 0.75 0.55 0.97 5

w3 0.75 0.55 0.97 5

(b)

GA parameters Population size (npop)

30 10 5

pcreep 0.1 (I), 0.5 (II) 0.1, 0.5 0.1, 0.5

pcross 0.5 0.5 0.5

Random number seed �1000 �1000 �1000

Maximum number of generations 150 150 150

Note: When sowing dates and area fractions (Cases 1 and 3) are to be

determined, only sd1 . . . a2 are propagated in GA; when water man-

agement is added (Case 2), the whole set (sd1 . . . a2, w2, w3) are

propagated.

pcreep and pcross are probabilities of creep mutation and crossover.

I—pcreep = 0.1; II—pcreep = 0.5.
a a3 ¼ 1�

P2
i¼1ai ¼ 0:35, thus excluded in chromosome p.

b wi = (Tact/Tpot)i where Tact and Tpot are the actual and potential

transpiration (mm d�1), respectively; w2 for irrigated_2; w3 for

irrigated_3.
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Fig. 3. (a) Generated daily hypothetical ET data to test the mixed-

pixel model, (top) the individual ET signature under rainfed,

irrigated_2 and irrigated_3 condition, and (bottom) under mixed

environment. (b) Generated daily hypothetical LAI data to test the

mixed-pixel model, (top) the individual LAI signature under rainfed,

irrigated_2 and irrigated_3 condition, and (bottom) under mixed

environment.
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the threshold of relative transpiration is exceeded (i.e.

Tact/Tpot < 0.75) SWAP will irrigate with a depth of

100 mm.

Fig. 3a shows the daily actual ET for each of the

components (top) and the mixed daily ET (weighted

mean) in the pixel assuming that rainfed occupies 15%

of the pixel area, and 50% and 35%, respectively, for irri-

gated_2 and irrigated_3 (bottom). Fig. 3b shows the sig-
natures for LAI; the LAI curves are less variable since

the daily variability of vegetation activity is relatively

small.

Table 2a also shows the search space for each mixing

parameters included in the chromosome used in GA.

The number of bits indicates the accuracy of the discrete

divisions between the minimum and maximum values of

the parameters. These discrete values are the ones only
represented by the binary representation of a mixing

parameter.

2.3.1.4. Simulated ‘‘observed’’ RS data. Processed high

temporal resolution data (e.g. NOAA, SPOT-VI,

MODIS) are usually available in 10- or 30-day compos-
ite (i.e. the maximum value within the set time interval)

to minimize the effect of clouds in the data. To simulate

this, we generated two data types from Fig. 3a and b
(bottom-plots): (i) every 10-day (ET10d, LAI10d), and

(ii) averaged every 10-day data (ET10d ave, LAI10d ave).

We have used them as the ‘‘observed’’ RS data for the

investigated pixel. The subscripts 10d and 10dave indi-

cate the non-averaged 10th day value and the aggre-

gated 10-day values of ET or LAI, which are

considered estimates of the 10-day composite data usu-

ally available from RS observations.
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2.3.2. Case studies

We investigated three major case studies in this pa-

per: (i) Case 1, using ‘‘observed’’ RS data (ET and

LAI) to determine the agricultural practices and area

fractions in the pixel; (ii) Case 2, same as Case 1 but

adding water management practices determination;
and (iii) Case 3, same as Case 1 but we added a random

noise to the ‘‘observed’’ RS data (see Eq. (21)). For Case

3, we generated five data patterns by adding a relative

error n (assumed to be 10%) to the ‘‘error-free’’ decadal

and 10-day averaged ‘‘observed’’ RS data. The random

error term could compose of some system induced errors

to the actual RS data such as the effects of cloud, atmo-

spheric condition or estimation errors of LAI and ET.

ET0 ¼ ETf1þ xng ð21Þ
where

x � Nð0; 1Þ;�1 6 x 6 1

For Case 1, we applied both CPM and MPM to the
mixed-pixel problem using ET10d and ET10d ave as search

criteria, respectively (see Table 2b for GA parameters

and treatment combinations). For the case of LAI10d
and LAI10d ave, we applied only MPM in the solu-

tion—which was further followed for the rest of the case

studies. In Case 3, we used all the data types (ET10d,

ET10d ave, LAI10d and LAI10d ave) in determining the mix-

ing parameters. In Case 2, we used only ET10d ave and
LAI10d as search criteria.

The case studies are partially virtual because the man-

agement practices used in the simulations are somewhat

related to the actual situations in the field. The relevance

of the work stems from the utilization of low spatial res-

olution data in crop area determination for water and

food security applications in the region. Given the abil-

ity to determine the spatial extents of agricultural and
water management practices would aid considerably

agricultural and water managers to plan appropriately

the delivery of services to the farmers to maximize the

use of available resources and optimize the output from

the agricultural system.
3. Results and discussion

3.1. Solution of the mixed-pixel model

Fig. 4 shows an example of a GA solution to the

mixed-pixel problem. The best fitness depicts the mea-

sure of the best chromosome in each generation; the

average fitness is a trace of the mean value of all the

measures of the chromosomes; and the average error
shows how the mean difference between the ‘‘observed’’

RS and simulated data, produced by the best chromo-

some, progresses in time. Based on the condition of opti-

mality, GA stops for a solution. In this case, we have
used the maximum number of generations, i.e. 150

generations.
Notice the prolonged plateau-like response of the

best fitness, this is a normal response for GA especially

when using a micro-population [21]. Other than the ef-

fects of crossover, the elusive solution may not be

reached without random perturbations. GA is a greedy

technique and tends to eliminate the weaker chromo-

somes in a short period of time. Note that crossover

was strongly supplemented by creep mutation (see the
perturbed average fitness) and has paid off after the

131st generation. The micro-population restarted before

the 150th generation—the instance when a sudden peak

in the average fitness is observed. At this point, most of

the chromosomes are nearly similar and have converged

accordingly.

3.1.1. Case 1: Agricultural practices and area fractions

Table 3 shows the summary of results for Case 1

when using ET as search criterion. Fig. 5a and b also

show the fitness magnitudes and average errors corre-

sponding to each treatment used (see Table 2b). The rea-

son why we applied here both CPM and MPM is to

evaluate which method can aid considerably in solving

the mixed-pixel problem, in terms of accuracy and speed

in finding the best solution. It is evident in the table that
MPM shows more promising results than CPM. It ap-

pears that the forcing in MPM is stronger, as it amplifies

the penalties causing weaker chromosomes to vanish

forcefully, hence favoring the propagation of the fitter

chromosomes. For all the combinations we tested, a

majority of the MPM results outperformed the CPM

(Fig. 5a and b). When using ET10d as search criterion,

we found that MPM outperformed its classic counter-
part four times while the latter succeeded only once. A

best average error of 0.01 mm d�1 was recorded for

MPM in one of the combinations we tested, while only

0.07 mm d�1 was achieved for CPM. Again, we ob-

served the same performance for MPM when using

ET10d ave as search criterion. CPM, however, produced



Table 3

Summary of results to the mixed-pixel problem using evapotranspiration as search criterion

Mixing parameters Classical penalty method (CPM) Modified penalty method (MPM)

ET10d ET10dave ET10d ET10d ave

Meana SD Mean SD Mean SD Mean SD

sd1 134.33 14.50 137.83 18.85 136.50 9.57 144.33 19.19

sd2 23.67 13.00 26.17 10.44 27.50 5.82 33.17 2.04

sd3 190.50 5.01 185.33 3.08 186.83 2.23 187.00 2.19

sd4 9.67 14.35 8.33 12.52 4.00 7.35 3.33 4.76

sd5 128.33 8.45 124.83 10.67 121.83 2.04 123.67 5.20

sd6 253.50 10.07 243.50 6.16 250.50 6.16 246.00 4.00

a1 0.20 0.05 0.15 0.09 0.17 0.06 0.18 0.05

a2 0.48 0.05 0.48 0.16 0.52 0.02 0.45 0.10

a3 0.32 0.07 0.36 0.08 0.31 0.07 0.38 0.06

Note: The sums of the means of ai at two decimal places are not exactly equal to 1.0 due to rounding errors.
a Across treatments.
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a best average error of 0.03 mm d�1. Interestingly, we

observed the same outcomes regardless of using any fit-

ness form and data type in the un-mixing process for the

case of npop = 5 with pcreep = 0.5 (i.e. II5 in Fig. 5a and

b).

The above results have practical implications. It is

shown that both ET10d and ET10d ave can be used to dis-
criminate agricultural activities in a mixed-pixel envi-

ronment, hence well-validated ET-RS methodologies

e.g. SEBAL [3], ALEXI [28] can be employed to gener-

ate spatial ET data for the un-mixing application. Since

computational time is precious for this kind of applica-

tion, it is worth knowing that a small population sized

GA is capable of arriving at a reasonable solution for

the mixed-pixel problem. This is a step forward for the
application of GA in solving actual linear mixture model

for operational use.

We have tested the speed of the solutions qualita-

tively by observing the state of the elite chromosomes

at the 100th generation. The question we seek to answer
in this part of the analysis is to whether the forcing in

MPM really matters in speeding up the solution. Fig.

6 shows the state of the best chromosomes after the

100th generation for all the combinations we tested,

when using ET10d and ET10d ave as search criteria. It is

shown in the figures that when pcreep is relatively low,

the effect of the forcing in MPM is apparent and appears
to be directly proportional to population size. This ef-

fect, however, seems to dissipate when a high

perturbation rate is introduced to the population. The

CPM fairs well with MPM, although the latter has a

more dominant performance than the former. The

order of the results for ET10d and ET10dave are the same

and given by population size: 5: CPM_01 > MPM_01 >

CPM_05&MPM_05; 10: CPM_01 >MPM_01 > CPM_05 >
MPM_05; and 30: CPM_01 > MPM_05 > CPM_05 >

MPM_01. ET10dave, in general, appears to be a more

stable search criterion than ET10d.

It is clear at this point that a high creep mutation rate

adds more speed in searching the solution than restart-
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ing the micro-population. This is true because when

pcreep is high, the micro-population seldom restarted

within 150 generations. The forcing in MPM also works

well in searching for the best results, as evident in Table

3 and Fig. 5. As an overall test, the spread of the solu-

tion with MPM is consistently narrower compared to
CPM, except for sd1 when using ET10d ave as search

criterion.

In addition to ET, we have also tested LAI as search

criterion in solving the mixed-pixel problem. Nowadays,

standard vegetation products, e.g. LAI, are available

from satellite data (e.g. MODIS-LAI). Based on the

above experiments, a micro-population of five still gives

acceptable results while saving calculation time, thus we
proceeded to the next step with npop = 5. We used only
Table 4

Solutions of genetic algorithm to the mixed-pixel problem using leaf

area index as search criterion

Mixing parameters LAI10d LAI10dave

sd1 140 120

sd2 32 31

sd3 186 186

sd4 2 1

sd5 121 129

sd6 246 249

a1 0.16 0.12

a2 0.50 0.52

a3 0.34 0.36

Fitness 33.93 12.68

Error, m2 m�2 0.03 0.08

Note: Using modified penalty method; npop = 5; pcreep = 0.5.
MPM (pcreep = 0.5) in this case since we have shown

above that MPM is more robust than CPM. Table 4

shows the results of the GA solution for both cases of

LAI10d and LAI10d ave. It is shown in the table that by

using LAI, it is possible still to derive the mixing param-

eters with good accuracy. Interestingly, LAI10d appears
to be more stable than LAI10d ave, compared to ET10d ave

as a better criterion when using ET in the search. Note

that DOY 120 is the minimum possible value of sd1 in

the search space (Table 2a), which implies that the fit-

ness function is non-sensitive in this region as the solu-

tion yielded still to a competitive average error of

0.08 m2 m�2. At this point, however, it is difficult to

compare which search criterion is better between LAI
and ET because the average errors are not in the same

units. Nevertheless, the individually derived mixing

parameter values (not shown) clearly show that LAI

and ET are both desirable. The decision then of using

either ET or LAI should be based upon the available

RS data and level of expertise in the institution. What

is interesting to note is that GA performs better with

10d data when using LAI, while with 10dave data when
using ET. The reason for this is still trivial because aver-

age data types are expected to have more recovery capa-

bilities, as they contain a higher memory of the system,

thus more likely to perform better in a sparse data series,

in this case, 36 data points for one year. This can be true

for ET because of its high variability with time, hence

the averaging of data points could improve the search,

but not necessarily for the smoother LAI curve (see
Fig. 3a and b). To support this hypothesis, it can be use-

ful to mention that the plot of LAI10dave is like a silhou-

ette of LAI10d (not shown) slightly shifted to the right

(R2 = 0.93), whereas ET10d and ET10dave curves appear

to be entangled, with R2 = 0.70.

3.1.2. Case 2: Agricultural and water management

practices and area fractions

We extended the model in Section 2.2.1 to include

water management practices as mixing parameters, i.e.

k = {sdj=1,g, ai=1,m, wi=2,m} (see Table 2a). Our initial

experiments showed that the combination of w2 and

w3 in the chromosome resulted in a severe sensitivity

problem with the fitness function. It seems that they can-

not be determined simultaneously in their present forms.

We speculated that w2 and w3 are highly correlated in
real space such that any change in one of them could

lead to similar or nearly similar effect on the fitness func-

tion causing their identification problem (see [36,22]). To

overcome this, we transformed w2 and w3 in such a way

that they are forced to behave opposite to the real space.

The transformations, w0
2 ¼ lnðw2Þ and w0

3 ¼ � lnðw3Þ,
tested best for the extended mixed-pixel problem.

We have written a separate module for this case study
to accommodate the 10 mixing parameters in the chro-

mosomes [as a3 = f(a1, a2) where f denotes a function



Table 5

Solutions of genetic algorithm to the mixed-pixel problem with water

management variables

Mixing parameters ET10dave LAI10d

sd1 146 120

sd2 32 32

sd3 184 186

sd4 2 1

sd5 121 131

sd6 248 249

a1 0.16 0.14

a2 0.51 0.51

a3 0.33 0.35

w2 0.78 0.78

w3 0.76 0.76

Fitness 12.12 12.70

Error 0.08 0.08

Note: Using modified penalty method; npop = 5; pcreep = 0.5.
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of] and the evaluation of the derived water management

practices in the simulations. We used the best search cri-

teria, excerpted from the previous experiments, to

evaluate the extended mixed-pixel problem. Table 5

shows the results of the two experiments for LAI10d
and ET10d ave. Apparently, the uncertainty in the solu-

tions has increased with the extended number of un-

known parameters. This is manifest particularly with
LAI10d, which could be attributed in part to the low

memory of the 10d or non-averaged data, although the

sensitivity problem of the mixing parameters could have

played a major role in the process. Nevertheless, aside

from sd1 and sd5, the other parameters were estimated

fairly well. For curiosity sake, we tried to solve the ex-

tended linear mixture model with LAI10d ave as search cri-

terion and the resulting values for sd1 and sd5 have
improved to DOY 146 and 121, respectively. The result

for ET10d ave further demonstrates the strength of aver-

aged data in solving extended mixing problems. Majority

of mixing parameters were estimated with good accuracy

regardless of the increased number of parameters.
Table 6

Summary of results to the mixed-pixel problem using evapotranspiration an

Mixing parameters ET

ET10d ET10dave

Meana SD Mean

sd1 151.60 22.83 139.00

sd2 32.40 1.14 30.80

sd3 182.40 4.93 185.20

sd4 1.20 0.45 5.00

sd5 121.00 0.00 120.80

sd6 247.20 1.79 248.20

a1 0.14 0.02 0.17

a2 0.51 0.04 0.48

a3 0.35 0.03 0.35

Note: The sums of the means of ai at two decimal places are not exactly equ
a Across patterns.
3.1.3. Case 3: With random error

Generally, actual RS data contains errors due to

atmospheric conditions, cloud cover, and errors in the

RS/relational models used to estimate ET or LAI. For

this reason, we tested the procedure assuming that some

degree of error is present in the dataset. As mentioned in
Section 2.3.2, we generated five datasets for this case

study, which we used to solve the linear mixture model

formulated in Case 1. The best GA parameters (based

on accuracy and efficiency) derived from Case 1 were se-

lected to implement these experiments. They are

npop = 10 and pcreep = 0.5 for ET10d, npop = 5 and

pcreep = 0.5 for ET10d ave. For LAI, we assumed that it

was practical to use npop = 5 and pcreep = 0.5 for both
cases.

Table 6 shows the summary of results of the experi-

ments. We found that even with added random noise

in the ‘‘observed’’ RS data it is still possible to derive

a conservative solution for the mixed-pixel problem.

The quality of the solutions depends greatly on the ran-

domness and severity of error in the dataset. It is inter-

esting to note that LAI performs better than ET in this
case study. The reason why LAI is more stable than ET

with noisy data is not yet clear but could be attributed to

the characteristics of the LAI curve. Fig. 7a and b show

the fitness magnitudes and average errors for each pat-

tern when using ET and LAI in the search.

In order to better understand what is happening in

the process, we documented the individual daily ET

and LAI outputs for all the agricultural land uses pro-
duced by the mean values of the solutions of the linear

mixture model derived using ET10d ave and LAI10d ave,

as search criteria. Fig. 8a and b show the simulated

ET and LAI curves using the mean values in Table 6

versus the ones using the actual agricultural practices

in the pixel (see Table 2a). It is clear in Fig. 8a that using

ET as search criterion conditions the ET outputs for

both the individual ET curves for each agricultural land
use and the mixed ET signature. The area fractions for
d leaf area index as search criteria with added random noise

LAI

LAI10d LAI10d ave

SD Mean SD Mean SD

9.57 138.60 5.13 136.60 8.76

4.55 31.40 0.55 31.80 0.45

4.32 185.40 0.89 186.60 2.70

6.20 1.40 0.55 1.20 0.45

7.95 121.05 0.00 121.57 2.83

1.48 248.00 0.71 248.20 0.84

0.07 0.16 0.01 0.18 0.05

0.04 0.51 0.01 0.49 0.04

0.05 0.34 0.01 0.33 0.01

al to 1.0 due to rounding errors.
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each land use served as weights and play a significant

role in the conditioning, which is apparent for irri-
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exception—LAI conditions also the ET outputs aside

from conditioning itself. This is true because ETact =

f(LAI). In SWAP, LAI is use to partition ETpot into

two components, Epot and Tpot (see Section 2.2.2), and

then these potential values are reduced according to ac-

tual environmental conditions to arrive at a value for

ETact, which is basically the sum of the actual soil evap-

oration (Eact) and plant transpiration (Tact).
4. Conclusions and recommendations

In this paper, we presented a methodology to solve

the mixed-pixel problem associated with the use of low

spatial resolution RS data for agricultural and water

management applications. Our numerical experiments
showed the substantial potential of determining both

the agricultural and water management practices from

low spatial resolution data using the appropriate search

criterion and data type to solve the linear mixture

model. To minimize the effect of non-uniqueness in the
solution, we recommend conducting exploratory works

before the actual applications. A sensitivity analysis of

the mixing parameters could reveal parameters that

can be removed from the formulation. Priori-informa-

tion on the existing agricultural and water management

practices in the area can be very useful in the process.

We tested two biophysical variables, ET and LAI, as

search criteria to solve linear mixture models at varying
degrees of complexity and found that both yielded satis-

factory results. We also explored the effect of data types

in the solution and found some interesting results to im-

prove the effectiveness of the solutions. Shorter memory

data type such as non-averaged LAI are more applicable

for lesser complex linear mixture models, while higher

memory data type such as 10-day average ET are more

applicable for more complex linear mixture models e.g.
the extended problem in Case 2. Based on the results,

however, LAI is preferred for mixed-pixel applications

when a high degree of noise is present in RS data.

In this study, the average computational time used to

evaluate a chromosome is summarized as follows: one,
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two and three seconds for rainfed simulation, irri-

gated_2, and irrigated_3 simulations, respectively. For

a micro-population of five, about 1.5 h is needed to com-

plete 150 generations in a Pentium 4 processor, 1.8 GHz

speed with 256 MB RAM. It is clear that for larger do-

main problems, improving the computational time is
necessary.

Thus, in line with this effort, we are trying several ap-

proaches to circumvent the constraints of computational

time. One approach we are exploring is by using cluster

computing to implement the procedure presented above

where the calculations are done in parallel fashion,

either at the pixel-level or within the GA-chromosome

evaluations. The AIT cluster computer OPTIMA is
being used for this purpose. We are also exploring the

possibility of extending the application to the AP-GRID

(Asia Pacific GRID) clusters. Another option is by using

a heuristic approach where we use a look up table to

evaluate the individual chromosomes instead of a dy-

namic link with the simulation model. These procedures

will be reported in future publications.

Finally, we recommend a sensitivity analysis of the
penalty coefficient kh in the un-mixing algorithm because

its optimal value could aid speeding up the search for

the solution of the mixed-pixel problem. An optimal kh
may control the rate of demise of the weaker but above

averaged chromosomes that may contain desirable or

essential genetic imprints that could hasten the search

for a solution. This is particularly important when GA

is implemented in a way that it can automatically stop
as the best solution is achieved, saving time in the

calculations.
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