13 research outputs found

    Evaluation of [68Ga]Ga-DOTA-TCTP-1 for the Detection of Metalloproteinase 2/9 Expression in Mouse Atherosclerotic Plaques

    Get PDF
    Background: The expression of matrix metalloproteinases 2/9 (MMP-2/9) has been implicated in arterial remodeling and inflammation in atherosclerosis. We evaluated a gallium-68 labeled peptide for the detection of MMP-2/9 in atherosclerotic mouse aorta. Methods: We studied sixteen low-density lipoprotein receptor deficient mice (LDLR-/-ApoB100/100) kept on a Western-type diet. Distribution of intravenously-injected MMP-2/9-targeting peptide, [68Ga]Ga-DOTA-TCTP-1, was studied by combined positron emission tomography (PET) and contrast-enhanced computed tomography (CT). At 60 min post-injection, aortas were cut into cryosections for autoradiography analysis of tracer uptake, histology, and immunohistochemistry. Zymography was used to assess MMP-2/9 activation and pre-treatment with MMP-2/9 inhibitor to assess the specificity of tracer uptake. Results: Tracer uptake was not visible by in vivo PET/CT in the atherosclerotic aorta, but ex vivo autoradiography revealed 1.8 ± 0.34 times higher tracer uptake in atherosclerotic plaques than in normal vessel wall (p = 0.0029). Tracer uptake in plaques correlated strongly with the quantity of Mac-3-positive macrophages (R = 0.91, p p = 0.099). Zymography showed MMP-2 activation in the aorta, and pre-treatment with MMP-2/9 inhibitor decreased tracer uptake by 55% (p = 0.0020). Conclusions: The MMP-2/9-targeting [68Ga]Ga-DOTA-TCTP-1 shows specific uptake in inflamed atherosclerotic lesions; however, a low target-to-background ratio precluded in vivo vascular imaging. Our results suggest, that the affinity of gelatinase imaging probes should be steered towards activated MMP-2, to reduce the interference of circulating enzymes on the target visualization in vivo. -</div

    Evaluation of 68Ga-labeled peptide tracer for detection of gelatinase expression after myocardial infarction in rat

    Get PDF
    BACKGROUND: Matrix metalloproteinases 2 and 9 (MMP-2/9) play a role in extracellular matrix remodeling after an ischemic myocardial injury. We evaluated 68Ga-DOTA-peptide targeting MMP-2/9 for the detection of gelatinase expression after myocardial infarction (MI) in rat.METHODS: Rats were injected with 43 ± 7.7 MBq of 68Ga-DOTA-peptide targeting MMP-2/9 at 7 days (n = 7) or 4 weeks (n = 8) after permanent coronary ligation or sham operation (n = 5 at both time points) followed by positron emission tomography (PET). The left ventricle was cut in frozen sections for autoradiography and immunohistochemistry 30 minutes after tracer injection.RESULTS: Immunohistochemical staining showed MMP-2 and MMP-9 expressing cells, CD31-positive endothelial cells, and CD68-positive macrophages in the infarcted myocardium. Autoradiography showed increased tracer uptake in the infarcted area both at 7 days and 4 weeks after MI (MI-to-remote area ratio 2.5 ± 0.46 and 3.1 ± 1.0, respectively). Tracer uptake in damaged tissue correlated with the amount of CD68-positive macrophages at 7 days after MI, and CD31-positive endothelial cells at 7 days and 4 weeks after MI. The tracer was rapidly metabolized, radioactivity in the blood exceeded that of the myocardium, and tracer accumulation in the heart was not detectable by in vivo PET.CONCLUSIONS: 68Ga-DOTA-peptide targeting MMP-2/9 accumulates in the damaged rat myocardium after an ischemic injury, but tracer instability and slow clearance in vivo make it unsuitable for further evaluation.</p

    Type 2 diabetes enhances arterial uptake of choline in atherosclerotic mice: an imaging study with positron emission tomography tracer F-18-fluoromethylcholine

    Get PDF
    Background: Diabetes is a risk factor for atherosclerosis associated with oxidative stress, inflammation and cell proliferation. The purpose of this study was to evaluate arterial choline uptake and its relationship to atherosclerotic inflammation in diabetic and non-diabetic hypercholesterolemic mice.Methods: Low-density lipoprotein-receptor deficient mice expressing only apolipoprotein B100, with or without type 2 diabetes caused by pancreatic overexpression of insulin-like growth factor II (IGF-II/LDLR−/−ApoB100/100 and LDLR−/−ApoB100/100) were studied. Distribution kinetics of choline analogue 18F-fluoromethylcholine (18F-FMCH) was assessed in vivo by positron emission tomography (PET) imaging. Then, aortic uptakes of 18F-FMCH and glucose analogue 18F-fluorodeoxyglucose (18F-FDG), were assessed ex vivo by gamma counting and autoradiography of tissue sections. The 18F-FMCH uptake in atherosclerotic plaques was further compared with macrophage infiltration and the plasma levels of cytokines and metabolic markers. Results: The aortas of all hypercholesterolemic mice showed large, macrophage-rich atherosclerotic plaques. The plaque burden and densities of macrophage subtypes were similar in diabetic and non-diabetic animals. The blood clearance of 18F-FMCH was rapid. Both the absolute 18F-FMCH uptake in the aorta and the aorta-to-blood uptake ratio were higher in diabetic than in non-diabetic mice. In autoradiography, the highest 18F-FMCH uptake co-localized with macrophage-rich atherosclerotic plaques. 18F-FMCH uptake in plaques correlated with levels of total cholesterol, insulin, C-peptide and leptin. In comparison with 18F-FDG, 18F-FMCH provided similar or higher plaque-to-background ratios in diabetic mice. Conclusions: Type 2 diabetes enhances the uptake of choline that reflects inflammation in atherosclerotic plaques in mice. PET tracer 18F-FMCH is a potential tool to study vascular inflammation associated with diabetes.</p

    18-kDa translocator protein ligand 18F-FEMPA: Biodistribution and uptake into atherosclerotic plaques in mice

    Get PDF
    18F-FEMPA shows rapid blood clearance and uptake in the mouse aorta. Uptake in atherosclerotic plaques correlated with the amount of macrophages, but did not exceed that in the normal vessel wall.</p

    Impact of metabolic substrate modification on myocardial efficiency in a rat model of obesity and diabetes

    No full text
    BackgroundCongenic leptin receptor deficient rat generated by introgression of the Koletsky leptin receptor mutation into BioBreeding Diabetes Resistant rat (BBDR.lepr−/−) is a novel animal model combining obesity, systemic insulin resistance and diabetes. Systemic insulin resistance is associated with reduced myocardial glucose utilization, but its effect on myocardial external efficiency, i.e. the ability of the myocardium to convert energy into external stroke work, remains uncertain.PurposeTo characterize cardiac energy metabolism and function in BBDR.lepr−/− rats and to study the effect of dipeptidyl peptidase 4 (DPP-4) inhibitor linagliptin in this model.MethodsCardiac phenotype was evaluated in six-month-old male BBDR.lepr−/− rats (n=11) and age-matched male non-diabetic lean control littermates (BBDR.lepr+/− or BBDR.lepr+/+ rats, n=14). Of these, 7 BBDR.lepr−/− rats and 6 controls underwent cardiac ultrasound, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT), and [11C]acetate PET in order to evaluate cardiac structure and function as well as glucose and oxidative metabolism. In the remaining rats, fatty acid metabolism was evaluated by [18F]fluorothia-6-heptadecanoic acid ([18F]FTHA) PET/CT. In the linagliptin intervention study, 25 BBDR.lepr−/− male rats were randomly divided into control group (n=11) that received regular chow diet and linagliptin group (n=14) that received linagliptin (10mg/kg/d) mixed in the chow diet for three months. After the intervention, the rats underwent cardiac ultrasound, [18F]FDG PET/CT, and [11C]acetate PET.ResultsCompared with controls, BBDR.lepr−/− rats showed increased left ventricle (LV) mass (∌40%, p>0.001) and higher systolic blood pressure (∌10%, p=0.02). However, fractional shortening and cardiac output were similar in both groups. Myocardial fractional uptake rate of glucose measured with [18F]FDG PET was significantly reduced (∌86%, p=0.004) (Fig. 1A, E), whereas myocardial fatty acid uptake measured by [18F]FTHA PET was not significantly increased (free fatty acid (FFA) corrected standardized uptake value (SUV) ∌21%, p=0.54) (Fig. 1B) in BBDR.lepr−/− compared to controls. Myocardial oxygen consumption assessed by [11C]acetate PET was similar in both groups (Fig. 1C, E), but LV work per gram of myocardium was reduced (∌28%, p=0.001) resulting in reduced myocardial external efficiency (∌21%, p=0.03) (Fig. 1D) in BBDR.lepr−/− compared to controls. Treatment with linagliptin significantly enhanced myocardial fractional uptake rate of glucose (∌166%, p=0.006) (Fig. 2A, C), but had no effect on efficiency of cardiac work (Fig. 2B).ConclusionsObese and diabetic BBDR.lepr−/− rats demonstrate LV hypertrophy and markedly reduced myocardial glucose utilization associated with impaired myocardial external efficiency despite normal LV systolic function. Enhancement of myocardial glucose uptake by linagliptin did not improve efficiency of cardiac work.Funding AcknowledgementType of funding sources: Public grant(s) – EU funding. Main funding source(s): IMI-SUMMI
    corecore