378 research outputs found

    Optimization of the chin bar of a composite-shell helmet to mitigate the upper neck force

    Get PDF
    The chin bar of motorcycl e full - face helmets is the most likely region of the helmet to sustain impact s during accident s , with a large percentage of these impacts lead ing to basilar skull fracture . Currently, helmet chin bars are designed to mitigate the peak acceleration at the c entre o f g ravity of isolated headforms , as required by standards, but they are not designed to mitigate the neck force, which is probably the cau se of basilar skull fracture, a type of head injury that can lead to fatalities . Here we test whether it is possible to increase the protection of helmet chin bars while meeting standard requirements. Fibre - reinforced composite shells are commonly used in helmets due to their lightweight and energy absorption charac teristics. W e optimize the ply orientation of a chin bar made of fibre - reinforced composite layers for reduction of the neck force in a dummy model using a computational approach . We use the fini te element model of a human head/neck surrogate and measure the neck axial force, which has been shown to be correlated with the risk of basilar skull fracture. The results show t hat by varying the orientation of the chin bar plies , thus keeping the helmet mass constant, the neck axial force can be reduced by approximately 3 0 % while ensuring that the helmet complies with the impact attenuation requirements prescribed in helmet standards

    Evolution of the galaxy luminosity function in progenitors of fossil groups

    Full text link
    Using the semi-analytic models based on the Millennium simulation, we trace back the evolution of the luminosity function of galaxies residing in progenitors of groups classified by the magnitude gap at redshift zero. We determine the luminosity function of galaxies within 0.25R200,0.5R200 0.25R_{200}, 0.5R_{200} , and R200R_{200} for galaxy groups/clusters. The bright end of the galaxy luminosity function of fossil groups shows a significant evolution with redshift, with changes in MM^* by \sim 1-2 mag between z0.5z\sim0.5 and z=0z=0 (for the central 0.5R2000.5R_{200}), suggesting that the formation of the most luminous galaxy in a fossil group has had a significant impact on the MM^{*} galaxies e.g. it is formed as a result of multiple mergers of the M M^{*} galaxies within the last 5\sim5 Gyr. In contrast, the slope of the faint end, α\alpha, of the luminosity function shows no considerable redshift evolution and the number of dwarf galaxies in the fossil groups exhibits no evolution, unlike in non-fossil groups where it grows by 2542%\sim25-42\% towards low redshifts. In agreement with previous studies, we also show that fossil groups accumulate most of their halo mass earlier than non-fossil groups. Selecting the fossils at a redshift of 1 and tracing them to a redshift 0, we show that 80%80\% of the fossil groups (1013Mh1<M200<1014Mh110^{13} M_{\odot} h^{-1}<M_{200}<10^{14} M_{\odot} h^{-1}) will lose their large magnitude gaps. However, about 40%40\% of fossil clusters (M200>1014Mh1M_{200}>10^{14} M_{\odot} h^{-1}) will retain their large gaps.Comment: Accepted for publication in A&A. 13 pages, 15 figure

    A novel method for incorporation of micron-sized SiC particles into molten pure aluminum utilizing a Co coating

    Get PDF
    Ceramic particles typically do not have sufficiently high wettability by molten metal for effective bonding during metal matrix composite fabrication. In this study, a novel method has been used to overcome this drawback. Micron-sized SiC particles were coated by a cobalt metallic layer using an electroless deposition method. A layer of cobalt on the SiC particles was produced prior to incorporation in molten pure aluminum in order to improve the injected particle bonding with the matrix. For comparison, magnesium was added to the melt in separate experiments as a wetting agent to assess which method was more effective for particle incorporation. It was found that both of these methods were more effective as regard ceramic particulate incorporation compared with samples produced with as-received SiC particles injected into the pure aluminum matrix. SEM images indicated that cobalt coating of the particles was more effective than magnesium for incorporation of fine SiC particles (below 30 lm), while totally the incorporation percentage of the particles was higher for a sample in which Mg was added as a wetting agent. In addition, microhardness tests revealed that the cobalt coating leads to the fabrication of a harder composite due to increased amount of ceramic incorporation, ceramic-matrix bonding, and possibly also to formation of Al-Co intermetallic phases

    Effect of interfacial-active elements addition on the incorporation of micron-sized SiC particles in molten pure aluminum

    Get PDF
    Ceramic particles generally have poor wettability by liquid metal, leading to a major drawback in fabrication of cast metal matrix composites (MMCs). In this work, the effect of 1 wt. % of Ca, Mg, Si, Ti, Zn and Zr interfacial-active alloying elements was studied on the incorporation of micron-sized SiC particles into the molten pure aluminum using the vortex casting method at 680 1C. The results indicated that Ti, Zr, Zn and Si were not positively effective in improving particulate incorporation, while Ca and especially Mg were very efficient at increasing the incorporation of ceramic particles into the molten Al. Also, it was revealed that Al3Ti, and Al3Zr intermetallic phases were formed for samples containing Ti and Zr, making hybrid MMCs with a higher amount of hardness. Finally, it was found that a reaction layer between Al and SiC particles was formed at the Al/SiC interface for all of the samples, expect for the ones containing Si and Ti, indicating that for most of the samples at 680 1C an exothermic reaction took place between the Al and SiC particles

    The evolution of the radio luminosity function of group galaxies in COSMOS

    Full text link
    To understand the role of the galaxy group environment on galaxy evolution, we present a study of radio luminosity functions (RLFs) of group galaxies based on the Karl G. Jansky Very Large Array-COSMOS 3 GHz Large Project. The radio-selected sample of 7826 COSMOS galaxies with robust optical/near-infrared counterparts, excellent photometric coverage, and the COSMOS X-ray galaxy groups (M_200c > 10^13.3 M_0) enables us to construct the RLF of group galaxies (GGs) and their contribution to the total RLF since z ~ 2.3. Using the Markov chain Monte Carlo algorithm, we fit a redshift-dependent pure luminosity evolution model and a linear and power-law model to the luminosity functions. We compare it with past RLF studies from VLA-COSMOS on individual populations of radio-selected star-forming galaxies (SFGs) and galaxies hosting active galactic nuclei (AGN). These populations are classified based on the presence or absence of a radio excess concerning the star-formation rates derived from the infrared emission. We find that the fraction of radio group galaxies evolves by a factor of ~ 3 from z ~ 2 to the present day. The increase in the galaxy group contribution is due to the radio activity in groups being nearly constant at z < 1, while it is declining in the field. We show that massive galaxies inside galaxy groups remain radio active below redshift 1, contrary to the ones in the field. This evolution in the GG RLF is driven mainly by satellite galaxies in groups. Group galaxies associated with SFGs dominate the GG RLF at z_med = 0.3, while at z_med = 0.8, the peak in the RLF, coinciding with a known overdensity in COSMOS, is mainly driven by AGN. The study provides an observational probe for the accuracy of the numerical predictions of the radio emission in galaxies in a group environment.Comment: submitted to A&A; 15 pages, 6 figures, 8 table

    Excitation of non-radial stellar oscillations by gravitational waves: a first model

    Full text link
    The excitation of solar and solar-like g modes in non-relativistic stars by arbitrary external gravitational wave fields is studied starting from the full field equations of general relativity. We develop a formalism that yields the mean-square amplitudes and surface velocities of global normal modes excited in such a way. The isotropic elastic sphere model of a star is adopted to demonstrate this formalism and for calculative simplicity. It is shown that gravitational waves solely couple to quadrupolar spheroidal eigenmodes and that normal modes are only sensitive to the spherical component of the gravitational waves having the same azimuthal order. The mean-square amplitudes in case of stationary external gravitational waves are given by a simple expression, a product of a factor depending on the resonant properties of the star and the power spectral density of the gravitational waves' spherical accelerations. Both mean-square amplitudes and surface velocities show a characteristic R^8-dependence (effective R^2-dependence) on the radius of the star. This finding increases the relevance of this excitation mechanism in case of stars larger than the Sun.Comment: 8 pages, to be published in MNRAS (in press); corrected typo

    Excitation of stellar oscillations by gravitational waves: hydrodynamic model and numerical results for the Sun

    Full text link
    Starting from a general relativistic framework a hydrodynamic formalism is derived that yields the mean-square amplitudes and rms surface velocities of normal modes of non-relativistic stars excited by arbitrary gravitational wave (GW) radiation. In particular, stationary GW fields are considered and the resulting formulae are evaluated for two general types of GW radiation: radiation from a particular astrophysical source (e.g., a binary system) and a stochastic background of gravitational waves (SBGW). Expected sources and signal strengths for both types of GW radiation are reviewed and discussed. Numerical results for the Sun show that low-order quadrupolar g modes are excited more strongly than p modes by orders of magnitude. Maximal rms surface velocities in the case of excitation by astrophysical sources are found to be v {\le} 10^(-8) mm/s, assuming GW strain amplitudes of h {\le} 10^(-20). It is shown that current models for an SBGW produced by cosmic strings, with Omega_GW ~ 10^(-8)-10^(-5) in the frequency range of solar g modes, are able to produce maximal solar g-mode rms surface velocities of 10^(-5)-10^(-3) mm/s. This result lies close to or within the amplitude range of 10^(-3)-1 mm/s expected from excitation by turbulent convection, which is currently considered to be responsible for stellar g-mode excitation. It is concluded that studying g-mode observations of stars other than the Sun, in which excitation by GWs could be even more effective due to different stellar structures, might provide a new method to either detect GWs or to deduce a significant direct upper limit on an SBGW at intermediate frequencies between the pulsar bound and the bounds from interferometric detectors on Earth.Comment: 20 pages, 5 figure
    corecore