535 research outputs found

    Combined chips for atom-optics

    Get PDF
    We present experiments with Bose-Einstein condensates on a combined atom chip. The combined structure consists of a large-scale "carrier chip" and smaller "atom-optics chips", containing micron-sized elements. This allows us to work with condensates very close to chip surfaces without suffering from fragmentation or losses due to thermally driven spin flips. Precise three-dimensional positioning and transport with constant trap frequencies are described. Bose-Einstein condensates were manipulated with submicron accuracy above atom-optics chips. As an application of atom chips, a direction sensitive magnetic field microscope is demonstrated.Comment: 9 pages, 9 figure

    Direct current superconducting quantum interferometers with asymmetric shunt resistors

    Full text link
    We have investigated asymmetrically shunted Nb/Al-AlOx_x/Nb direct current (dc) superconducting quantum interference devices (SQUIDs). While keeping the total resistance RR identical to a comparable symmetric SQUID with R1=R11+R21R^{-1} = R_1^{-1} + R_2^{-1}, we shunted only one of the two Josephson junctions with R=R1,2/2R = R_{1,2}/2. Simulations predict that the optimum energy resolution ϵ\epsilon and thus also the noise performance of such an asymmetric SQUID can be 3--4 times better than that of its symmetric counterpart. Experiments at a temperature of 4.2\,K yielded ϵ32\epsilon \approx 32\,\hbar for an asymmetric SQUID with an inductance of 22pH22\,\rm{pH}. For a comparable symmetric device ϵ=110\epsilon = 110\,\hbar was achieved, confirming our simulation results.Comment: 5 pages, 4 figure

    Enhancing the critical current in quasiperiodic pinning arrays below and above the matching magnetic flux

    Full text link
    Quasiperiodic pinning arrays, as recently demonstrated theoretically and experimentally using a five-fold Penrose tiling, can lead to a significant enhancement of the critical current Ic as compared to "traditional" regular pinning arrays. However, while regular arrays showed only a sharp peak in Ic(Phi) at the matching flux Phi1 and quasiperiodic arrays provided a much broader maximum at Phi<Phi1, both types of pinning arrays turned out to be inefficient for fluxes larger than Phi1. We demonstrate theoretically and experimentally the enhancement of Ic(Phi) for Phi>Phi1 by using non-Penrose quasiperiodic pinning arrays. This result is based on a qualitatively different mechanism of flux pinning by quasiperiodic pinning arrays and could be potentially useful for applications in superconducting micro-electronic devices operating in a broad range of magnetic fields.Comment: 7 pages, 4 figure

    0-pi Josephson tunnel junctions with ferromagnetic barrier

    Full text link
    We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi junction, with equal lengths and critical currents of 0 and pi parts. The ground state of our 330 microns (1.3 lambda_J) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying ~6.7% of the magnetic flux quantum Phi_0. The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.Comment: submitted to PR

    Critical current diffraction pattern of SIFS Josephson junctions with step-like F-layer

    Full text link
    We present the latest generation of superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions with a step-like thickness of the ferromagnetic (F) layer. The F-layer thicknesses d1d_1 and d2d_2 in both halves were varied to obtain different combinations of positive and negative critical current densities jc,1j_{c,1} and jc,2j_{c,2}. The measured dependences of the critical current on applied magnetic field can be well described by a model which takes into account different critical current densities (obtained from reference junctions) and different net magnetization of the multidomain ferromagnetic layer in both halves.Comment: 7 pages, 3 figure

    Suppression of dissipation in Nb thin films with triangular antidot arrays by random removal of pinning sites

    Full text link
    The depinning current Ic versus applied magnetic field B close to the transition temperature Tc of Nb thin films with randomly diluted triangular arrays of antidots is investigated. % Our experiments confirm essential features in Ic(B) as predicted by Reichhardt and Olson Reichhardt [Phys.Rev. B 76, 094512 (2007)]. % We show that, by introducing disorder into periodic pinning arrays, Ic can be enhanced. % In particular, for arrays with fixed density n_p of antidots, an increase in dilution Pd induces an increase in Ic and decrease of the flux-flow voltage for B>Bp=n_p Phi_0.Comment: 5 pages, 4 figure

    Diffraction of a Bose-Einstein condensate from a Magnetic Lattice on a Micro Chip

    Full text link
    We experimentally study the diffraction of a Bose-Einstein condensate from a magnetic lattice, realized by a set of 372 parallel gold conductors which are micro fabricated on a silicon substrate. The conductors generate a periodic potential for the atoms with a lattice constant of 4 microns. After exposing the condensate to the lattice for several milliseconds we observe diffraction up to 5th order by standard time of flight imaging techniques. The experimental data can be quantitatively interpreted with a simple phase imprinting model. The demonstrated diffraction grating offers promising perspectives for the construction of an integrated atom interferometer.Comment: 4 pages, 4 figure

    High quality ferromagnetic 0 and pi Josephson tunnel junctions

    Get PDF
    We fabricated high quality \Nb/\Al_2\O_3/\Ni_{0.6}\Cu_{0.4}/\Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Depending on the thickness of the ferromagnetic \Ni_{0.6}\Cu_{0.4} layer and on the ambient temperature, the junctions were in the 0 or π\pi ground state. All junctions have homogeneous interfaces showing almost perfect Fraunhofer patterns. The \Al_2\O_3 tunnel barrier allows to achieve rather low damping, which is desired for many experiments especially in the quantum domain. The McCumber parameter βc\beta_c increases exponentially with decreasing temperature and reaches βc700\beta_c\approx700 at T=2.1KT=2.1 {\rm K}. The critical current density in the π\pi state was up to 5A/cm25\:\rm{A/cm^2} at T=2.1KT=2.1 {\rm K}, resulting in a Josephson penetration depth λJ\lambda_J as low as 160μm160\:\rm{\mu m}. Experimentally determined junction parameters are well described by theory taking into account spin-flip scattering in the \Ni_{0.6}\Cu_{0.4} layer and different transparencies of the interfaces.Comment: Changed content and Corrected typo
    corecore