171 research outputs found

    New RNA playgrounds : non-coding RNAs and RNA-binding proteins control cellular processes

    Get PDF
    Het eiwit Dead End noodzakelijk is voor het overleven van geslachtscellen. Het beschermt enkele genen tegen blokkades door microRNA__s. Dat stelt onderzoeker Martijn Kedde van het NKI-AVL in zijn proefschrift. Kedde promoveert donderdag 22 januari. MicroRNA__s, kleine stukjes RNA, blokkeren de ontwikkeling van geslachtscellen door enkele genen te remmen. Om te zorgen dat geslachtscellen zich toch kunnen ontwikkelen, is er het eiwit Dead End 1 (Dnd1). Het eiwit schermt het boodschapper-RNA van het erfelijk materiaal van de geslachtscel af zodat microRNA-430 er niet aan kan binden. In feite een doodlopende weg voor de microRNA__s. Ook heeft Kedde, onderzoeker in de groep van Reuven Agami, de rol van hTR in reactie op schade aan het DNA beschreven. hTR is onderdeel van het telomerasecomplex, een enzym dat er voor zorgt dat kankercellen ongebreideld kunnen delen. Het blijkt dat hTR de groei van kankercellen in de hand werkt doordat het schade aan het DNA negeert. De rode draad in het proefschrift van Kedde is non-coderend RNA. De functies van de verschillende non-coderende RNA__s die hij beschrijft, laten zien dat het speelveld (de __playground__) van niet-coderende RNA__s steeds maar weer groter blijkt dan eerder werd aangenomen.UBL - phd migration 201

    Verteporfin ameliorates fibrotic aspects of Dupuytren's disease nodular fibroblasts irrespective the activation state of the cells

    Get PDF
    Dupuytren's disease is a chronic, progressive fibroproliferative condition of the hand fascia which results in digital contraction. So far, treatments do not directly interfere with the (myo)fibroblasts that are responsible for the formation of the collagen-rich cords and its contraction. Here we investigated whether verteporfin (VP) is able to inhibit the activation and subsequent differentiation of DD nodular fibroblasts into myofibroblasts. Fibroblasts were isolated from nodules of 7 Dupuytren patients. Cells are treated (1) for 48 h with 5 ng/ml transforming growth factor β1 (TGF-β1) followed by 48 h with/without 250 nM VP in the absence of TGF-β1, or treated (2) for 48 h with TGF-β1 followed by 48 h with/without VP in the presence of TGF-β1. mRNA levels were measured by means of Real-Time PCR, and proteins were visualized by means of Western blotting and/or immunofluorescence. Quantitative data were statistically analyzed with GraphPad Prism using the paired t-test. We found that fibroblasts activated for 48 h with TGF-β1 show a decrease in mRNA levels of COL1A1, COL3A1, COL4A1, PLOD2, FN1EDA, CCN2 and SERPINE1 when exposed for another 48 h with VP, whereas no decrease is seen for ACTA2, YAP1, SMAD2 and SMAD3 mRNA levels. Cells exposed for an additional 48 h with TGF-β1, but now in the presence of VP, are not further activated anymore, whereas in the absence of VP the cells continue to differentiate into myofibroblasts. Collagen type I, fibronectin-extra domain A, α-smooth muscle actin, YAP1, Smad2 and Smad3 protein levels were attenuated by both VP treatments. We conclude that VP has strong anti-fibrotic properties: it is able to halt the differentiation of fibroblasts into myofibroblasts, and is also able to reverse the activation status of fibroblasts. The decreased protein levels of YAP1, Smad2 and Smad3 in the presence of VP explain in part the strong anti-fibrotic properties of VP. Verteporfin is clinically used as a photosensitizer for photodynamic therapy to eliminate abnormal blood vessels in the eye to attenuate macular degeneration. The antifibrotic properties of VP do not rely on photo-activation, as we used the molecule in its non-photoinduced state

    DAZL Relieves miRNA-Mediated Repression of Germline mRNAs by Controlling Poly(A) Tail Length in Zebrafish

    Get PDF
    BACKGROUND:During zebrafish embryogenesis, microRNA (miRNA) miR-430 contributes to restrict Nanos1 and TDRD7 to primordial germ cells (PGCs) by inducing mRNA deadenylation, mRNA degradation, and translational repression of nanos1 and tdrd7 mRNAs in somatic cells. The nanos1 and tdrd7 3'UTRs include cis-acting elements that allow activity in PGCs even in the presence of miRNA-mediated repression. METHODOLOGY/PRINCIPAL FINDINGS:Using a GFP reporter mRNA that was fused with tdrd7 3'UTR, we show that a germline-specific RNA-binding protein DAZ-like (DAZL) can relieve the miR-430-mediated repression of tdrd7 mRNA by inducing poly(A) tail elongation (polyadenylation) in zebrafish. We also show that DAZL enhances protein synthesis via the 3'UTR of dazl mRNA, another germline mRNA targeted by miR-430. CONCLUSIONS/SIGNIFICANCE:Our present study indicated that DAZL acts as an "anti-miRNA factor" during vertebrate germ cell development. Our data also suggested that miRNA-mediated regulation can be modulated on specific target mRNAs through the poly(A) tail control

    Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity

    Get PDF
    MicroRNAs (miRNAs) interact with 3′-untranslated regions of messenger RNAs to restrict expression of most protein-coding genes during normal development and cancer. RNA-binding proteins (RBPs) can control the biogenesis, stability and activity of miRNAs. Here we identify RBM38 in a genetic screen for RBPs whose expression controls miRNA access to target mRNAs. RBM38 is induced by p53 and its ability to modulate miRNA-mediated repression is required for proper p53 function. In contrast, RBM38 shows lower propensity to block the action of the p53-controlled miR-34a on SIRT1. Target selectivity is determined by the interaction of RBM38 with uridine-rich regions near miRNA target sequences. Furthermore, in large cohorts of human breast cancer, reduced RBM38 expression by promoter hypermethylation correlates with wild-type p53 status. Thus, our results indicate a novel layer of p53 gene regulation, which is required for its tumour suppressive function

    MiR-200c Regulates Noxa Expression and Sensitivity to Proteasomal Inhibitors

    Get PDF
    The pro-apoptotic p53 target Noxa is a BH3-only protein that antagonizes the function of selected anti-apoptotic Bcl-2 family members. While much is known regarding the transcriptional regulation of Noxa, its posttranscriptional regulation remains relatively unstudied. In this study, we therefore investigated whether Noxa is regulated by microRNAs. Using a screen combining luciferase reporters, bioinformatic target prediction analysis and microRNA expression profiling, we identified miR-200c as a negative regulator of Noxa expression. MiR-200c was shown to repress basal expression of Noxa, as well as Noxa expression induced by various stimuli, including proteasomal inhibition. Luciferase reporter experiments furthermore defined one miR-200c target site in the Noxa 3′UTR that is essential for this direct regulation. In spite of the miR-200c:Noxa interaction, miR-200c overexpression led to increased sensitivity to the clinically used proteasomal inhibitor bortezomib in several cell lines. This apparently contradictory finding was reconciled by the fact that in cells devoid of Noxa expression, miR-200c overexpression had an even more pronounced positive effect on apoptosis induced by proteasomal inhibition. Together, our data define miR-200c as a potentiator of bortezomib-induced cell death. At the same time, we show that miR-200c is a novel negative regulator of the pro-apoptotic Bcl-2 family member Noxa

    MicroRNA159 Can Act as a Switch or Tuning MicroRNA Independently of Its Abundance in Arabidopsis

    Get PDF
    The efficacy of gene silencing by plant microRNAs (miRNAs) is generally assumed to be predominantly determined by their abundance. In Arabidopsis the highly abundant miRNA, miR159, acts as a molecular “switch” in vegetative tissues completely silencing the expression of two GAMYB-like genes, MYB33 and MYB65. Here, we show that miR159 has a diminished silencing efficacy in the seed. Using reporter gene constructs, we determined that MIR159 and MYB33 are co-transcribed in the aleurone and embryo of germinating seeds. However in contrast to vegetative tissues, MYB33 is not completely silenced. Instead, miR159 appears to shape the spatio-temporal expression pattern of MYB33 during seed germination. Transcript profiling in a time course during seed germination in wild-type and a mir159 mutant in which miR159 is almost absent, revealed that transcript levels of the GAMYB-like genes were similar between these two genotypes during germination, but much higher in the mir159 mutant once germination had completed. This attenuation in the silencing of the GAMYB-like genes was not explained by a decrease in mature miR159 levels, which remained constant at all time points during seed germination. We propose that miR159 acts as a tuner of GAMYB-like levels in Arabidopsis germinating seeds and that the activity of this miRNA is attenuated in the seed compared to vegetative tissues. This implies that the efficacy of miRNA-mediated silencing is not solely determined by miRNA abundance and target transcript levels, but is being determined through additional mechanisms

    3′UTR-Mediated Gene Silencing of the Mixed Lineage Leukemia (MLL) Gene

    Get PDF
    Translocations involving the Mixed Lineage Leukemia (MLL) gene generate in-frame fusions of MLL with more than 50 different partner genes (PGs). Common to all MLL translocations is the exchange not only of coding regions, but also of MLL and PG 3′-untranslated regions (3′UTRs). As a result, the MLL-PG fusion is normally highly expressed and considered the main driver of leukemia development, whereas the function of the PG-MLL fusions in leukemic disease is unclear. As 3′UTRs have been recognized as determinant regions for regulation of gene expression, we hypothesized that loss of the MLL 3′UTR could have a role in generating high MLL-PG levels and leukemia development. Here, we first tested the MLL-PG and PG-MLL mRNA levels in different leukemic cells and tumours and uncovered differential expression that indicates strong repression by the MLL-3′UTR. Reporter assays confirmed that the 3′UTR of MLL, but not of its main PGs, harbours a region that imposes a strong gene silencing effect. Gene suppression by the MLL 3′UTR was largely microRNA independent and did not affect mRNA stability, but inhibited transcription. This effect can at least partially be attributed to a tighter interaction of the MLL 3′UTR with RNA polymerase II than PG 3′UTRs, affecting its phosphorylation state. Altogether, our findings indicate that MLL translocations relieve oncogenic MLL-PG fusions from the repressive MLL 3′UTR, contributing to higher activity of these genes and leukaemia development

    The Nanos3-3′UTR Is Required for Germ Cell Specific NANOS3 Expression in Mouse Embryos

    Get PDF
    BACKGROUND: The regulation of gene expression via a 3' untranslated region (UTR) plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present. METHODOLOGY/PRINCIPAL FINDINGS: In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells. CONCLUSIONS/SIGNIFICANCE: Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo

    HuB (elavl2) mRNA Is Restricted to the Germ Cells by Post-Transcriptional Mechanisms including Stabilisation of the Message by DAZL

    Get PDF
    The ability of germ cells to carry out a gene regulatory program distinct from the surrounding somatic tissue, and their capacity to specify an entire new organism has made them a focus of many studies that seek to understand how specific regulatory mechanisms, particularly post-transcriptional mechanisms, contribute to cell fate. In zebrafish, germ cells are specified through the inheritance of cytoplasmic determinants, termed the germ plasm, which contains a number of maternal mRNAs and proteins. Investigation of several of these messages has revealed that the restricted localisation of these mRNAs to the germ plasm and subsequent germ cells is due to cis-acting sequence elements present in their 3′UTRs. Here we show that a member of the Hu family of RNA-binding proteins, HuB, is maternally provided in the zebrafish embryo and exhibits germ cell specific expression during embryogenesis. Restriction of HuB mRNA to the germ cells is dependent on a number of sequence elements in its 3′UTR, which act to degrade the mRNA in the soma and stabilise it in the germ cells. In addition, we show that the germ cell specific RNA-binding protein DAZL is able to promote HuB mRNA stability and translation in germ cells, and further demonstrate that these activities require a 30 nucleotide element in the 3′UTR. Our study suggests that DAZL specifically binds the HuB 3′UTR and protects the message from degradation and/or enhances HuB translation, leading to the germ cell specific expression of HuB protein

    A Novel Putative miRNA Target Enhancer Signal

    Get PDF
    It is known that miRNA target sites are very short and the effect of miRNA-target site interaction alone appears as being unspecific. Recent experiments suggest further context signals involved in miRNA target site recognition and regulation. Here, we present a novel GC-rich RNA motif downstream of experimentally supported miRNA target sites in human mRNAs with no similarity to previously reported functional motifs. We demonstrate that the novel motif can be found in at least one third of all transcripts regulated by miRNAs. Furthermore, we show that motif occurrence and the frequency of miRNA target sites as well as the stability of their duplex structures correlate. The finding, that the novel motif is significantly associated with miRNA target sites, suggests a functional role of the motif in miRNA target site biology. Beyond, the novel motif has the impact to improve prediction of miRNA target sites significantly
    corecore