174 research outputs found

    Feed the Future Mali: Scaling up technological and institutional livestock innovations

    Get PDF
    United States Agency for International Developmen

    Effects of the soil microbiome on the demography of two annual prairie plants

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.1. Both mutualistic and pathogenic soil microbes are known to play important roles in shaping the fitness of plants, likely affecting plants at different life cycle stages. 2. In order to investigate the differential effects of native soil mutualists and pathogens on plant fitness, we compared survival and reproduction of two annual tallgrass prairie plant species (Chamaecrista fasciculata and Coreopsis tinctoria) in a field study using 3 soil inocula treatments containing different compositions of microbes. The soil inocula types included fresh native whole soil taken from a remnant prairie containing both native mutualists and pathogens, soil enhanced with arbuscular mycorrhizal (AM) fungi derived from remnant prairies, and uninoculated controls. 3. For both species, plants inoculated with native prairie AM fungi performed much better than those in uninoculated soil for all parts of the life cycle. Plants in the native whole prairie soil were either generally similar to plants in the uninoculated soil or had slightly higher survival or reproduction. 4. Overall, these results suggest that native prairie AM fungi can have important positive effects on the fitness of early successional plants. As inclusion of prairie AM fungi and pathogens decreased plant fitness relative to prairie AM fungi alone, we expect that native pathogens also can have large effects on fitness of these annuals. Our findings support the use of AM fungi to enhance plant establishment in prairie restorations.National Science Foundation (NSF DEB‐1556664)National Science Foundation (DEB‐1738041)National Science Foundation (OIA 1656006

    Etude Comparative Des Produits Issus De La Transformation En Filature Des Fibres De Trois Nouvelles Variétés De Cotonnier

    Get PDF
    Résumé - Au Mali, comme ailleurs en Afrique, la sélection variétale est à la base du succès de la culture cotonnière. Le coton du Mali est presqu’entièrement exporté ; les fibres issues des variétés cultivées doivent répondre aux exigences du marché en termes de caractéristiques technologiques des fibres, facteurs clés du fonctionnement de la filature. Cette étude comparative a été réalisée sur trois nouvelles variétés de cotonniers A, B et C, issues d’un point d'expérimentation. L'objectif de l'étude est d’identifier les variétés ayant les meilleures performances variétales et industrielles pour la vulgarisation en production commerciale par les sociétés cotonnières. 1 échantillon représentatif de 100g de coton fibre, 20 échantillons de 5 m de rubans de carde, d’étirage et de 10 m de mèches, 30 échantillons de 100 m de fil et 40 échantillons de 500 mm de fil ont été respectivement prélevés par balle de chaque variété et à différentes étapes du processus de transformation par variété. Ces échantillons ont été testés sur des appareils de mesure dans les conditions requises au laboratoire de métrologie textile du CERFITEX, Ségou - Mali.L’analyse de variance (ANOVA) des données relatives aux fibres, rubans, mèches et fils et la comparaison de leurs principales caractéristiques de qualité à celle de la production mondiale avec l’application des USTER STATISTICS 2018 ont montré que les variétés de cotonnier A et B sont nettement meilleures que celle de C. Les performances variétales et industrielles de A et B, meilleures que celles de C sont recommandées à la vulgarisation Mots clés : Coton, caractéristiques technologiques, qualité, fibres, fils. [Comparative Study Of The Products Resulting From The Transformation Into Spinning Of The Fibers Of Three New Varieties Of Cotton]Abstract - In Mali, as elsewhere in Africa, varietal selection is the basis of the success of cotton growing. Cotton from Mali is almost entirely exported; fibers from cultivated varieties must meet market requirements in terms of the technological characteristics of fibers, key factors in the operation of the spinning mill. This comparative study was carried out on three new varieties of cotton A, B and C, from an experimental point. The objective of the study is to identify the varieties with the best varietal and industrial performance for popularization in commercial production by cotton companies. 1 representative sample of 100g of cotton fiber, 20 samples of 5m of carding and drawing slivers and 10m of rovings, 30 samples of 100m of yarn and 40 samples of 500mm of yarn were respectively taken per bale of each variety and at different stages of the transformation process by variety. These samples were tested on measuring devices under the required conditions at the CERFITEX textile metrology laboratory, Ségou - Mali.The analysis of variance (ANOVA) of fiber, sliver, roving and yarn data and the comparison of their main quality characteristics to that of world production with the application of USTER STATISTICS 2018 showed that cotton varieties A and B are clearly better than those of C. The varietal and industrial performances of A and B, better than that of C are recommended for popularisation Keywords : Cotton, technological characteristics, quality, fibres, yarns

    Effects of microplastics and drought on soil ecosystem functions and multifunctionality

    Get PDF
    1. Microplastics in soils have become an important threat for terrestrial systems as they may potentially alter the geochemical/biophysical soil environment and can interact with drought. As microplastics may affect soil water content, this could exacerbate the well-known negative effects of drought on ecosystem functionality. Thus, functions including litter decomposition, soil aggregation or those related with nutrient cycling can be altered. Despite this potential interaction, we know relatively little about how microplastics, under different soil water conditions, affect ecosystem functions and multifunctionality. 2. To address this gap, we performed an experiment using grassland plant communities growing in microcosms. Microplastic fibres (absent, present) and soil water conditions (well-watered, drought) were applied in a fully factorial design. At harvest, we measured soil ecosystem functions related to nutrient cycling (beta-glucosaminidase, beta-D-cellobiosidase, phosphatase, beta-glucosidase enzymes), respiration, nutrient retention, pH, litter decomposition and soil aggregation (water stable aggregates). As terrestrial systems provide these functions simultaneously, we also assessed ecosystem multifunctionality, an index that encompasses the array of ecosystem functions measured here. 3. We found that the interaction between microplastic fibres and drought affected ecosystem functions and multifunctionality. Drought had negatively affected nutrient cycling by decreasing enzymatic activities by up to similar to 39%, while microplastics increased soil aggregation by similar to 18%, soil pH by similar to 4% and nutrient retention by up to similar to 70% by diminishing nutrient leaching. Microplastic fibres also impacted soil enzymes, respiration and ecosystem multifunctionality, but importantly, the direction of these effects depended on soil water status. That is, under well-watered conditions, these functions decreased with microplastic fibres by up to similar to 34% while under drought they had similar values irrespective of the microplastic presence, or tended to increase with microplastics. Litter decomposition had a contrary pattern increasing with microplastics by similar to 6% under well-watered conditions while decreasing to a similar percentage under drought. 4. Synthesis and applications. Single ecosystem functions can be positively or negatively affected by microplastics fibres depending on soil water status. However, our results suggest that microplastic fibres may cause negative effects on ecosystem soil multifunctionality of a similar magnitude as drought. Thus, strategies to counteract this new global change factor are necessary

    Failure to Recognize Nontuberculous Mycobacteria Leads to Misdiagnosis of Chronic Pulmonary Tuberculosis

    Get PDF
    BACKGROUND: Nontuberculous mycobacterial (NTM) infections cause morbidity worldwide. They are difficult to diagnose in resource-limited regions, and most patients receive empiric treatment for tuberculosis (TB). Our objective here is to evaluate the potential impact of NTM diseases among patients treated presumptively for tuberculosis in Mali. METHODS: We re-evaluated sputum specimens among patients newly diagnosed with TB (naïve) and those previously treated for TB disease (chronic cases). Sputum microscopy, culture and Mycobacterium tuberculosis drug susceptibility testing were performed. Identification of strains was performed using molecular probes or sequencing of secA1 and/or 16S rRNA genes. RESULTS: Of 142 patients enrolled, 61 (43%) were clinically classified as chronic cases and 17 (12%) were infected with NTM. Eleven of the 142 (8%) patients had NTM disease alone (8 M. avium, 2 M. simiae and 1 M. palustre). All these 11 were from the chronic TB group, comprising 11/61 (18%) of that group and all were identified as candidates for second line treatment. The remaining 6/17 (35.30%) NTM infected patients had coinfection with M. tuberculosis and all 6 were from the TB treatment naïve group. These 6 were candidates for the standard first line treatment regimen of TB. M. avium was identified in 11 of the 142 (8%) patients, only 3/11 (27.27%) of whom were HIV positive. CONCLUSIONS: NTM infections should be considered a cause of morbidity in TB endemic environments especially when managing chronic TB cases to limit morbidity and provide appropriate treatment

    Evaluation and optimization of membrane feeding compared to direct feeding as an assay for infectivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria parasite infectivity to mosquitoes has been measured in a variety of ways and setting, includind direct feeds of and/or membrane feeding blood collected from randomly selected or gametocytemic volunteers. <it>Anopheles gambiae s.l </it>is the main vector responsible of <it>Plasmodium falciparum </it>transmission in Bancoumana and represents about 90% of the laboratory findings, whereas <it>Plasmodium malariae </it>and <it>Plasmodium ovale </it>together represent only 10%.</p> <p>Materials and methods</p> <p>Between August 1996 and December 1998, direct and membrane feeding methods were compared for the infectivity of children and adolescent gametocyte carriers to anopheline mosquitoes in the village of Bancoumana in Mali. Gametocyte carriers were recruited twice a month through a screening of members of 30 families using Giemsa-stained thick blood smears. F1 generation mosquitoes issued from individual female wild mosquitoes from Bancoumana were reared in a controlled insectary conditions and fed 5% sugar solution in the laboratory in Bamako, until the feeding day when they are starved 12 hours before the feeding experiment. These F1 generation mosquitoes were divided in two groups, one group fed directly on gametocyte carriers and the other fed using membrane feeding method.</p> <p>Results</p> <p>Results from 372 <it>Plasmodium falciparum </it>gametocyte carriers showed that children aged 4–9 years were more infectious than adolescents (p = 0.039), especially during the rainy season. Data from 35 carriers showed that mosquitoes which were used for direct feeding were about 1.5 times more likely to feed (p < 0.001) and two times more likely to become infected, if they fed (p < 0.001), than were those which were used for membrane feeding. Overall, infectivity was about three-times higher for direct feeding than for membrane feeding (p < 0.001).</p> <p>Conclusion</p> <p>Although intensity of infectivity was lower for membrane feeding, it could be a surrogate to direct feeding for evaluating transmission-blocking activity of candidate malaria vaccines. An optimization of the method for future trials would involve using about three-times more mosquitoes than would be used for direct feeding.</p

    Tuberculosis drug resistance in Bamako, Mali, from 2006 to 2014.

    Get PDF
    BACKGROUND: Although Drug resistance tuberculosis is not a new phenomenon, Mali remains one of the "blank" countries without systematic data. METHODS: Between 2006 and 2014, we enrolled pulmonary TB patients from local TB diagnostics centers and a university referral hospital in several observational cohort studies. These consecutive patients had first line drug susceptibility testing (DST) performed on their isolates. A subset of MDR was subsequently tested for second line drug resistance. RESULTS: A total of 1186 mycobacterial cultures were performed on samples from 522 patients, including 1105 sputa and 81 blood samples, yielding one or more Mycobacterium tuberculosis complex (Mtbc) positive cultures for 343 patients. Phenotypic DST was performed on 337 (98.3%) unique Mtbc isolates, of which 127 (37.7%) were resistant to at least one drug, including 75 (22.3%) with multidrug resistance (MDR). The overall prevalence of MDR-TB was 3.4% among new patients and 66.3% among retreatment patients. Second line DST was available for 38 (50.7%) of MDR patients and seven (18.4%) had resistance to either fluoroquinolones or second-line injectable drugs. CONCLUSION: The drug resistance levels, including MDR, found in this study are relatively high, likely related to the selected referral population. While worrisome, the numbers remained stable over the study period. These findings prompt a nationwide drug resistance survey, as well as continuous surveillance of all retreatment patients, which will provide more accurate results on countrywide drug resistance rates and ensure that MDR patients access appropriate second line treatment
    corecore