6 research outputs found

    Phase II Study of Palbociclib (PD-0332991) in CCND1, 2, or 3 Amplification: Results from the NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol Z1B

    Get PDF
    Purpose: Cyclin D/CDK4/6 is critical in controlling the G1 to S checkpoint. CCND, the gene encoding cyclin D, is known to be amplified in a variety of solid tumors. Palbociclib is an oral CDK4/6 inhibitor, approved in advanced breast cancer in combination with endocrine therapy. We explored the efficacy of palbociclib in patients with nonbreast solid tumors containing an amplification in CCND1, 2, or 3. Patients and methods: Patients with tumors containing a CCND1, 2, or 3 amplification and expression of the retinoblastoma protein were assigned to subprotocol Z1B and received palbociclib 125 mg once daily for 21 days of a 28-day cycle. Tumor response was assessed every two cycles. Results: Forty patients were assigned to subprotocol Z1B; 4 patients had outside assays identifying the CCND1, 2, or 3 amplification and were not confirmed centrally; 3 were ineligible and 2 were not treated (1 untreated patient was also ineligible), leaving 32 evaluable patients for this analysis. There were no partial responses; 12 patients (37.5%) had stable disease as best response. There were seven deaths on study, all during cycle 1 and attributable to disease progression. Median progression-free survival was 1.8 months. The most common toxicities were leukopenia (n = 21, 55%) and neutropenia (n = 19, 50%); neutropenia was the most common grade 3/4 event (n = 12, 32%). Conclusions: Palbociclib was not effective at treating nonbreast solid tumors with a CCND1, 2, or 3 amplification in this cohort. These data do not support further investigation of single-agent palbociclib in tumors with CCND1, 2, or 3 amplification

    Addition of elotuzumab to lenalidomide and dexamethasone for patients with newly diagnosed, transplantation ineligible multiple myeloma (ELOQUENT-1): an open-label, multicentre, randomised, phase 3 trial

    Get PDF

    Embedded Mechanical Stress Sensors for Advanced Process Control

    No full text
    Publication suite au congrès : Advanced Semiconductor Manufacturing Conference, 2007. ASMC 2007. IEEE/SEMIInternational audienceFor state of the art microelectronic technologies, reliability is a major challenge. Mechanical stress induced by the process steps is often at the origin of yield losses. Degradations of electronic devices are usually correlated to the presence of defects such as dislocations, cracks or delaminations. Usual methods for mechanical stress measurement generally require off-line measurements and are not compatible with fast correction of process parameters. We propose here embedded stress microsensors to allow fast monitoring of mechanical stress and enable real time correction of the process parameters. The test vehicle presented here is dedicated to polysilicon stress monitoring. Its feasibility, sensitivity and relevance in an advanced process control objective are particularly investigated
    corecore