208 research outputs found

    North American Breeding Bird Survey Underestimates Regional Bird Richness Compared to Breeding Bird Atlases

    Get PDF
    Standardized data on large-scale and long-term patterns of species richness are critical for understanding the consequences of natural and anthropogenic changes in the environment. The North American Breeding Bird Survey (BBS) is one of the largest and most widely used sources of such data, but so far, little is known about the degree to which BBS data provide accurate estimates of regional richness. Here, we test this question by comparing estimates of regional richness based on BBS data with spatially and temporally matched estimates based on state Breeding Bird Atlases (BBA). We expected that estimates based on BBA data would provide a more complete (and therefore, more accurate) representation of regional richness due to their larger number of observation units and higher sampling effort within the observation units. Our results were only partially consistent with these predictions: while estimates of regional richness based on BBA data were higher than those based on BBS data, estimates of local richness (number of species per observation unit) were higher in BBS data. The latter result is attributed to higher land-cover heterogeneity in BBS units and higher effectiveness of bird detection (more species are detected per unit time). Interestingly, estimates of regional richness based on BBA blocks were higher than those based on BBS data even when differences in the number of observation units were controlled for. Our analysis indicates that this difference was due to higher compositional turnover between BBA units, probably due to larger differences in habitat conditions between BBA units and a higher likelihood of observing geographically restricted species. Our overall results indicate that estimates of regional richness based on BBS data suffer from incomplete detection of a large number of rare species, and that corrections of these estimates based on standard extrapolation techniques are not sufficient to remove this bias. Future applications of BBS data in ecology and conservation, and in particular, applications in which the representation of rare species is important (e.g., those focusing on biodiversity conservation), should be aware of this bias, and should integrate BBA data whenever possible

    Методика перестроения маршрута полета воздушного судна в процессе его выполнения

    Get PDF
       A significant number of aviation incidents is related to loss of control in flight and controlled flight into terrain (LOC-I, CFIT, LALT categories). Investigation of these aviation incidents has revealed that these incidents often occur due to the need for rapid changes in flight routes as a result of detecting obstacles, such as thunderstorms, along the aircraft's path. During the determination of alternative routes to circumvent the encountered obstacle, as well as during the implementation process of the chosen rerouted route, the flight crew makes errors due to increased psycho-physiological workload and time constraints. This article presents an approach to the automatic rerouting of the aircraft's flight route to avoid obstacles detected during flight. The algorithm proposed by the authors allows for evaluating the safety of the original route, calculating alternative route options to bypass the obstacles encountered during flight, verifying their feasibility considering the aircraft's flight technical characteristics and control parameter limitations, and selecting the optimal rerouted route based on specific criteria, such as minimizing the increase in the flight route length, reducing additional fuel consumption, time required for implementing the new flight route, etc. Examples of rerouting the flight route of a hypothetical aircraft with detected obstacles along the flight path are provided in the article to demonstrate the algorithm's functionality. It is shown, in particular, that in the considered example, the shortest route for obstacle avoidance is not optimal in terms of time. It is also demonstrated that the safety of flying along the identified alternative rerouted routes depends, among other factors, on the selected flight speed. Therefore, for each calculated rerouted route, the algorithm determines a range of speeds within which the implementation of the obtained rerouted route is possible. This highlights the complexity and non-triviality of the pilot's task of autonomously finding a safe obstacle avoidance route on board the aircraft.   Большое количество авиационных происшествий связано с потерей управления в полете, а также со столкновением с землей в управляемом полете (категории LOC-I, CFIT, LALT). В результате расследования данных авиационных происшествий выявлено, что часто указанные авиационные происшествия обусловлены необходимостью быстрого изменения маршрута полета вследствие выявления на пути следования воздушного судна препятствий, например, грозового фронта. При определении альтернативных маршрутов облета возникшего препятствия, а также впроцессе реализации выбранного маршрута облета экипаж совершает ошибки ввиду повышенной психофизиологической нагрузки и дефицита времени. В данной статье представлен подход к автоматическому перестроению маршрута полета воздушного судна для облета обнаруженных в процессе полета препятствий. Предлагаемый авторами алгоритм позволяет оценить безопасность исходного маршрута, рассчитать варианты альтернативных маршрутов облета обнаруженных впроцессе полета препятствий, проверить их на реализуемость с учетом летно-технических характеристик воздушного судна, ограничений на управляющие параметры, а также выбрать среди найденных маршрутов облета оптимальный с точки зрения какого-либо критерия, например, исходя из минимизации увеличения протяженности маршрута полета, сокращения дополнительных затрат топлива, времени, необходимого на реализацию нового маршрута полета, и т. д. Для демонстрации работоспособности алгоритма в статье представлены примеры перестроения маршрута полета гипотетического воздушного судна с выявленными на пути следования препятствиями. Показано, в частности, что в рассмотренном примере самый короткий маршрут облета препятствий не является оптимальным с точки зрения временных затрат. Также демонстрируется, что безопасность пролета по найденным альтернативным маршрутам облета препятствий зависит в том числе от выбранной скорости полета. Поэтому для каждого рассчитанного маршрута облета препятствий алгоритм определяет диапазон скоростей, в котором возможна реализация полученного маршрута облетапрепятствий. Последнее указывает на сложность и нетривиальность самостоятельного решения задачи поиска безопасного маршрута облета препятствий пилотом на борту воздушного судна

    A niche remedy for the dynamical problems of neutral theory

    Full text link
    We demonstrate how niche theory and Hubbell's original formulation of neutral theory can be blended together into a general framework modeling the combined effects of selection, drift, speciation, and dispersal on community dynamics. This framework connects many seemingly unrelated ecological population models, and allows for quantitative predictions to be made about the impact of niche stabilizing and destabilizing forces on population extinction times and abundance distributions. In particular, the existence of niche stabilizing forces in our blended framework can simultaneously resolve two major problems with the dynamics of neutral theory, namely predictions of species lifetimes that are too short and species ages that are too long.Comment: 47 pages, 4 figures, Accepted to Theoretical Ecolog

    Surface Doping Quantum Dots with Chemically Active Native Ligands: Controlling Valence without Ligand Exchange

    Get PDF
    One remaining challenge in the field of colloidal semiconductor nanocrystal quantum dots is learning to control the degree of functionalization or valence per nanocrystal. Current quantum dot surface modification strategies rely heavily on ligand exchange, which consists of replacing the nanocrystal\u27s native ligands with carboxylate- or amine-terminated thiols, usually added in excess. Removing the nanocrystal\u27s native ligands can cause etching and introduce surface defects, thus affecting the nanocrystal\u27s optical properties. More importantly, ligand exchange methods fail to control the extent of surface modification or number of functional groups introduced per nanocrystal. Here, we report a fundamentally new surface ligand modification or doping approach aimed at controlling the degree of functionalization or valence per nanocrystal while retaining the nanocrystal\u27s original colloidal and photostability. We show that surface-doped quantum dots capped with chemically active native ligands can be prepared directly from a mixture of ligands with similar chain lengths. Specifically, vinyl and azide-terminated carboxylic acid ligands survive the high temperatures needed for nanocrystal synthesis. The ratio between chemically active and inactive-terminated ligands is maintained on the nanocrystal surface, allowing to control the extent of surface modification by straightforward organic reactions. Using a combination of optical and structural characterization tools, including IR and 2D NMR, we show that carboxylates bind in a bidentate chelate fashion, forming a single monolayer of ligands that are perpendicular to the nanocrystal surface. Moreover, we show that mixtures of ligands with similar chain lengths homogeneously distribute themselves on the nanocrystal surface. We expect this new surface doping approach will be widely applicable to other nanocrystal compositions and morphologies, as well as to many specific applications in biology and materials science

    The monoclonal antibody EPR1614Y against the stem cell biomarker keratin K15 lacks specificity and reacts with other keratins

    Get PDF
    Keratin 15 (K15), a type I keratin, which pairs with K5 in epidermis, has been used extensively as a biomarker for stem cells. Two commercial antibodies, LHK15, a mouse monoclonal and EPR1614Y, a rabbit monoclonal, have been widely employed to study K15 expression. Here we report differential reactivity of these antibodies on epithelial cells and tissue sections. Although the two antibodies specifically recognised K15 on western blot, they reacted differently on skin sections and cell lines. LHK15 reacted in patches, whereas EPR1614Y reacted homogenously with the basal keratinocytes in skin sections. In cultured cells, LHK15 did not react with K15 deficient NEB-1, KEB-11, MCF-7 and SW13 cells expressing only exogenous K8 and K18 but reacted when these cells were transduced with K15. On the other hand, EPR1614Y reacted with these cells even though they were devoid of K15. Taken together these results suggest that EPR1614Y recognises a conformational epitope on keratin filaments which can be reconstituted by other keratins as well as by K15. In conclusion, this report highlights that all commercially available antibodies may not be equally specific in identifying the K15 positive stem cell

    Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals

    Get PDF
    Colloidal semiconductor nanocrystals possess unique properties that are unmatched by other chromophores such as organic dyes or transition-metal complexes. These versatile building blocks have generated much scientific interest and found applications in bioimaging, tracking, lighting, lasing, photovoltaics, photocatalysis, thermoelectrics, and spintronics. Despite these advances, important challenges remain, notably how to produce semiconductor nanostructures with predetermined architecture, how to produce metastable semiconductor nanostructures that are hard to isolate by conventional syntheses, and how to control the degree of surface loading or valence per nanocrystal. Molecular chemists are very familiar with these issues and can use their expertise to help solve these challenges. In this Perspective, we present our group\u27s recent work on bottom-up molecular control of nanoscale composition and morphology, low-temperature photochemical routes to semiconductor heterostructures and metastable phases, solar-to-chemical energy conversion with semiconductor-based photocatalysts, and controlled surface modification of colloidal semiconductors that bypasses ligand exchange

    Synthesis, isomerisation and biological properties of mononuclear ruthenium complexes containing the bis[4(4 '-methyl-2,2 '-bipyridyl)]-1,7-heptane ligand

    Get PDF
    A series of mononuclear ruthenium(II) complexes containing the tetradentate ligand bis[4(4’-methyl-2,2’- bipyridyl)]-1,7-heptane have been synthesised and their biological properties examined. In the synthesis of the [Ru(phen’)(bb7)]2+ complexes (where phen’ = 1,10-phenanthroline and its 5-nitro-, 4,7-dimethyland 3,4,7,8-tetramethyl- derivatives), both the symmetric cis-α and non-symmetric cis-β isomers were formed. However, upon standing for a number of days (or more quickly under harsh conditions) the cis-β isomer converted to the more thermodynamically stable cis-α isomer. The minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC) of the ruthenium(II) complexes were determined against six strains of bacteria: Gram-positive Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA); and the Gram-negative Escherichia coli (E. coli) strains MG1655, APEC, UPEC and Pseudomonas aeruginosa (P. aeruginosa). The results showed that the [Ru(5-NO2phen)- (bb7)]2+ complex had little or no activity against any of the bacterial strains. By contrast, for the other cisα-[Ru(phen’)(bb7)]2+ complexes, the antimicrobial activity increased with the degree of methylation. In particular, the cis-α-[Ru(Me4phen)(bb7)]2+ complex showed excellent and uniform MIC activity against all bacteria. By contrast, the MBC values for the cis-α-[Ru(Me4phen)(bb7)]2+ complex varied considerably across the bacteria and even within S. aureus and E. coli strains. In order to gain an understanding of the relative antimicrobial activities, the DNA-binding affinity, cellular accumulation and water–octanol partition coefficients (log P) of the ruthenium complexes were determined. Interestingly, all the [Ru(phen’)- (bb7)]2+ complexes exhibited stronger DNA binding affinity (Ka ≈ 1 × 107 M−1 ) than the well-known DNAintercalating complex [Ru(phen)2(dppz)]2+ (where dppz = dipyrido[3,2-a:2’,3’-c]phenazine)
    corecore