175 research outputs found

    Mutation analysis of P73 and TP53 in Merkel cell carcinoma

    Get PDF
    The p73 gene has been mapped to 1p36.33, a region which is frequently deleted in a wide variety of neoplasms including tumours of neuroectodermal origin. The p73 protein shows structural and functional homology to p53. For these reasons, p73 was considered as a positional and functional candidate tumour suppressor gene. Thus far, mutation analysis has provided no evidence for involvement of p73 in oligodendrogliomas, lung carcinoma, oesophageal carcinoma, prostatic carcinoma and hepatocellular carcinoma. In neuroblastoma, two mutations have been observed in a series of 140 tumours. In view of the occurrence of 1p deletions in Merkel cell carcinoma (MCC) and the location of p73 we decided to search for mutations in the p73 gene in five MCC cell lines and ten MCC tumours to test potential tumour suppressor function for this gene in MCC. In view of the possible complementary functions of p73 and TP53 we also examined the status of the TP53 gene. Sequence analysis of the entire coding region of the p73 gene revealed previously reported polymorphisms in four MCCs. In one MCC tumour, a mis-sense mutation located in the NH2-terminal transactivation region of the p73 gene was found. These results show that p73, analogous to neuroblastoma, is infrequently mutated in MCC. This is also the first report in which the role of TP53 in MCC has been investigated by sequencing the entire coding region of TP53. TP53 mis-sense mutations and one non-sense mutation were detected in three of 15 examined MCCs, suggesting that TP53 mutations may play a role in the pathogenesis or progression of a subset of MCCs. Moreover, typical UVB induced C to T mutations were found in one MCC cell line thus providing further evidence for sun-exposure in the aetiology of this rare skin cancer. © 2000 Cancer Research Campaig

    TP73 allelic expression in human brain and allele frequencies in Alzheimer's disease

    Get PDF
    BACKGROUND: The p73 protein, a paralogue of the p53 tumor suppressor, is essential for normal development and survival of neurons. TP73 is therefore of interest as a candidate gene for Alzheimer's disease (AD) susceptibility. TP73 mRNA is transcribed from three promoters, termed P1 – P3, and there is evidence for an additional complexity in its regulation, namely, a variable allelic expression bias in some human tissues. METHODS: We utilized RT-PCR/RFLP and direct cDNA sequencing to measure allele-specific expression of TP73 mRNA, SNP genotyping to assess genetic associations with AD, and promoter-reporter assays to assess allele-specific TP73 promoter activity. RESULTS: Using a coding-neutral BanI polymorphism in TP73 exon 5 as an allelic marker, we found a pronounced allelic expression bias in one adult brain hippocampus, while 3 other brains (two adult; one fetal) showed approximately equal expression from both alleles. In a tri-ethnic elderly population of African-Americans, Caribbean Hispanics and Caucasians, a G/A single nucleotide polymorphism (SNP) at -386 in the TP73 P3 promoter was weakly but significantly associated with AD (crude O.R. for AD given any -386G allele 1.7; C.I. 1.2–2.5; after adjusting for age and education O.R. 1.5; C.I. 1.1–2.3, N= 1191). The frequency of the -386G allele varied by ethnicity and was highest in African-Americans and lowest in Caucasians. No significant differences in basal P3 promoter activity were detected comparing -386G vs. -386A promoter-luciferase constructs in human SK-NSH-N neuroblastoma cells. CONCLUSIONS: There is a reproducible allelic expression bias in mRNA expression from the TP73 gene in some, though not all, adult human brains, and inter-individual variation in regulatory sequences of the TP73 locus may affect susceptibility to AD. However, additional studies will be necessary to exclude genetic admixture as an alternative explanation for the observed associations

    Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor

    Get PDF
    AbstractA human neurotensin receptor (hNTR) cDNA was cloned from the colonic adenocarcinoma cell line HT29. The cloned cDNA encodes a putative peptide of 418 amino acids with 7 transmembrane domains. The amino acid sequence of the hNTR is 84% identical to the rat NTR [Neuron, 4 (1990) 847-854]. Transfection of this cDNA into COS cells results in the expression of receptors with pharmacological properties similar to those found with HT29 cells. Northern blot analysis using the hNTR cDNA probe indicated a single transcript of 4 kb in the brain, the small intestine and blood mononuclear cells

    Radiation-induced G1 arrest is not defective in fibroblasts from Li-Fraumeni families without TP53 mutations

    Get PDF
    Radiation-induced G1 arrest was studied in four classes of early passage skin fibroblasts comprising 12 normals, 12 heterozygous (mut/wt) TP53 mutation-carriers, two homozygous (mut/–) TP53 mutation-carriers and 16 strains from nine Li-Fraumeni syndrome or Li-Fraumeni-like families in which no TP53 mutation has been found, despite sequencing of all exons, exon–intron boundaries, 3′ and 5′ untranslated regions and promoter regions. In an assay of p53 allelic expression in yeast, cDNAs from these non-mutation strains behaved as wild-type p53. Using two different assays, we found G1 arrest was reduced in heterozygous strains with mis-sense mutations and one truncation mutation, when compared to the range established for the normal cells. Heterozygous strains with mutations at splice sites behaved like normal cells, whilst homozygous (mut/–) strains showed either extremely reduced, or no, arrest. Strains from all nine non-mutation families gave responses within the normal range. Exceptions to the previously reported inverse correlation between G1 arrest and clonogenic radiation resistance were observed, indicating that these phenotypes are not strictly interdependent. © 1999 Cancer Research Campaig

    Detection and Verification of Mammalian Mirtrons by Northern Blotting

    Get PDF
    microRNAs (miRNAs) have vital roles in regulating gene expression—contributing to major diseases like cancer and heart disease. Over the last decade, thousands of miRNAs have been discovered through high throughput sequencing-based annotation. Different classes have been described, as well as a great dynamic range of expression levels. While sequencing approaches provide insight into biogenesis and allow confident identification, there is a need for additional methods for validation and characterization. Northern blotting was one of the first techniques used for studying miRNAs, and remains one of the most valuable as it avoids enzymatic manipulation of miRNA transcripts. Blotting can also provide insight into biogenesis by revealing RNA processing intermediates. Compared to sequencing, however, northern blotting is a relatively insensitive technology. This creates a challenge for detecting low expressed miRNAs, particularly those produced by inefficient, non-canonical pathways. In this chapter, we describe a strategy to study such miRNAs by northern blotting that involves ectopic expression of both miRNAs and miRNA-binding Argonaute (Ago) proteins. Through use of epitope tags, this strategy also provides a convenient method for verification of small RNA competency to be loaded into regulatory complexes

    p53FamTaG: a database resource of human p53, p63 and p73 direct target genes combining in silico prediction and microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The p53 gene family consists of the three genes p53, p63 and p73, which have polyhedral non-overlapping functions in pivotal cellular processes such as DNA synthesis and repair, growth arrest, apoptosis, genome stability, angiogenesis, development and differentiation. These genes encode sequence-specific nuclear transcription factors that recognise the same responsive element (RE) in their target genes. Their inactivation or aberrant expression may determine tumour progression or developmental disease. The discovery of several protein isoforms with antagonistic roles, which are produced by the expression of different promoters and alternative splicing, widened the complexity of the scenario of the transcriptional network of the p53 family members. Therefore, the identification of the genes transactivated by p53 family members is crucial to understand the specific role for each gene in cell cycle regulation. We have combined a genome-wide computational search of p53 family REs and microarray analysis to identify new direct target genes. The huge amount of biological data produced has generated a critical need for bioinformatic tools able to manage and integrate such data and facilitate their retrieval and analysis.</p> <p>Description</p> <p>We have developed the p53FamTaG database (p53 FAMily TArget Genes), a modular relational database, which contains p53 family direct target genes selected in the human genome searching for the presence of the REs and the expression profile of these target genes obtained by microarray experiments. p53FamTaG database also contains annotations of publicly available databases and links to other experimental data.</p> <p>The genome-wide computational search of the REs was performed using PatSearch, a pattern-matching program implemented in the DNAfan tool. These data were integrated with the microarray results we produced from the overexpression of different isoforms of p53, p63 and p73 stably transfected in isogenic cell lines, allowing the comparative study of the transcriptional activity of all the proteins in the same cellular background.</p> <p>p53FamTaG database is available free at <url>http://www2.ba.itb.cnr.it/p53FamTaG/</url></p> <p>Conclusion</p> <p>p53FamTaG represents a unique integrated resource of human direct p53 family target genes that is extensively annotated and provides the users with an efficient query/retrieval system which displays the results of our microarray experiments and allows the export of RE sequences. The database was developed for supporting and integrating high-throughput <it>in silico</it> and experimental analyses and represents an important reference source of knowledge for research groups involved in the field of oncogenesis, apoptosis and cell cycle regulation.</p

    Mutation analysis of the p73 gene in nonastrocytic brain tumours

    Get PDF
    Loss of heterozygosity (LOH) involving the distal chromosome 1p36region occurs frequently in nonastrocytic brain tumours, but the tumour suppressor gene targeted by this deletion is unknown. p73is a novel gene that has high sequence homology and similar gene structure to thep53 gene; it has been mapped to 1p36, and may thus represent a candidate for this tumour suppressor gene. To determine whether p73is involved in nonastrocytic brain tumour development, we analysed 65 tumour samples including 26 oligodendrogliomas, 4 ependymomas, 5 medulloblastomas, 10 meningiomas, 2 meningeal haemangiopericytomas, 2 neurofibrosarcomas, 3 primary lymphomas, 8 schwannomas and 5 metastatic tumours to the brain, for p73 alterations. Characterization of allelic loss at 1p36–p35 showed LOH in about 50% of cases, primarily involving oligodendroglial tumours (22 of 26 cases analysed; 85%) and meningiomas (4 of 10; 40%). PCR-SSCP and direct DNA sequencing of exons 2 to 14 of p73 revealed a missense mutation in one primary lymphoma: a G-to-A transition, with Glu291Lys change. 8 additional cases displayed no tumour-specific alterations, as 3 distinct polymorphic changes were identified: a double polymorphic change of exon 5 was found in one ependymoma and both samples derived from an oligodendroglioma, as follows: a G-to-A transition with no change in Pro 146, and a C-to-T variation with no change in Asn 204: a delG at exon 3/+12 position was identified in 4 samples corresponding to 2 oligodendrogliomas, 1 ependymoma and 1 meningioma, and a C-to-T change at exon 2/+10 position was present in a metastatic tumour. Although both LOH at 1p36 and p73 sequence changes were evidenced in 4 cases, it is difficult to establish a causal role of the p73 variations and nonastrocytic brain tumours development. © 2001 Cancer Research Campaign http://www.bjcancer.co

    E7 proteins from oncogenic human papillomavirus types transactivate p73: role in cervical intraepithelial neoplasia

    Get PDF
    In common with other E2F1 responsive genes such as p14ARF and B-myb, the promoter of p73 is shown to be positively regulated in cell lines and primary human keratinocytes by E7 proteins from oncogenic human papillomavirus (HPV) types 16, 18, 31 and 33, but not HPV 6. Mutational analysis revealed that transactivation of the p73 promoter by HPV 16E7 requires association with pRb. Expression of p73 in normal cervical epithelium is confined to the basal and supra-basal layers. In contrast, expression in neoplastic lesions is detected throughout the epithelium and increases with grade of neoplasia, being maximal in squamous cell cancers (SCC). Deregulation of expression of the N-terminal splice variant p73Δ2 was observed in a significant proportion of cancers, but not in normal epithelium. The frequent over-expression of p73Δ2, which has recognized transdominant properties, in malignant and pre-malignant lesions suggests a role in the oncogenic process in cervical epithelium

    TAp73 is one of the genes responsible for the lack of response to chemotherapy depending on B-Raf mutational status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although there have been many studies on the p73 gene, some of its functions still remain unclear. There is little research on the relationship between p73 gene transcription and its protein expression and the response to certain drugs such as oxaliplatin and cetuximab, which are drugs currently used in colorectal cancer.</p> <p>The purpose of this study was to evaluate the impact of TAp73 expression on oxaliplatin and cetuximab-based chemotherapy in colorectal cancer cell lines with different K-Ras and B-Raf mutational status.</p> <p>Methods</p> <p>TAp73 was analyzed in three colorectal tumor cell lines HT-29, SW-480 and Caco-2. mRNA TAp73 was determined using Real time PCR; TAp73 protein by immunoblotting and cell viability was analyzed by the MTT method.</p> <p>Results</p> <p>We found that mRNA and TAp73 protein were decreased in cells treated with oxaliplatin (in monotherapy or combined with cetuximab) when B-Raf is mutated. This was statistically significant and was also associated with higher cell viability after the treatment.</p> <p>Conclusions</p> <p>Here, for the first time we report, that there is a signaling loop between B-Raf activation and p73 function.</p> <p>Low expression of TAp73 in colorectal cancer cell lines with mutated B-Raf may be involved in the lack of response to oxaliplatin in monotherapy or combined with cetuximab.</p
    corecore