7,410 research outputs found
Development of an Advanced Force Field for Water using Variational Energy Decomposition Analysis
Given the piecewise approach to modeling intermolecular interactions for
force fields, they can be difficult to parameterize since they are fit to data
like total energies that only indirectly connect to their separable functional
forms. Furthermore, by neglecting certain types of molecular interactions such
as charge penetration and charge transfer, most classical force fields must
rely on, but do not always demonstrate, how cancellation of errors occurs among
the remaining molecular interactions accounted for such as exchange repulsion,
electrostatics, and polarization. In this work we present the first generation
of the (many-body) MB-UCB force field that explicitly accounts for the
decomposed molecular interactions commensurate with a variational energy
decomposition analysis, including charge transfer, with force field design
choices that reduce the computational expense of the MB-UCB potential while
remaining accurate. We optimize parameters using only single water molecule and
water cluster data up through pentamers, with no fitting to condensed phase
data, and we demonstrate that high accuracy is maintained when the force field
is subsequently validated against conformational energies of larger water
cluster data sets, radial distribution functions of the liquid phase, and the
temperature dependence of thermodynamic and transport water properties. We
conclude that MB-UCB is comparable in performance to MB-Pol, but is less
expensive and more transferable by eliminating the need to represent
short-ranged interactions through large parameter fits to high order
polynomials
Brain Localisation of Memory Chunks in Chessplayers
Chess experts store domain-specific representations in their long-term memory; due to the activation of such representations, they perform with high accuracy in tasks that require the maintenance of previously seen information. Chunk-based theories of expertise (chunking theory: Chase & Simon, 1973; template theory: Gobet & Simon, 1996) state that expertise is acquired mainly by the acquisition and storage in long-term memory of familiar chunks that allow quick recognition. We tested some predictions of these theories by using fMRI while chessplayers performed a recognition memory task. These theories predict that chessplayers access long-term memory chunks of domain-specific information, which are presumably stored in the temporal lobes. We also predicted that the recognition memory tasks would activate working memory areas in the frontal and parietal lobes. These predictions were supported by the data
Cluster decomposition of full configuration interaction wave functions: a tool for chemical interpretation of systems with strong correlation
Approximate full configuration interaction (FCI) calculations have recently
become tractable for systems of unforeseen size thanks to stochastic and
adaptive approximations to the exponentially scaling FCI problem. The result of
an FCI calculation is a weighted set of electronic configurations, which can
also be expressed in terms of excitations from a reference configuration. The
excitation amplitudes contain information on the complexity of the electronic
wave function, but this information is contaminated by contributions from
disconnected excitations, i.e. those excitations that are just products of
independent lower-level excitations. The unwanted contributions can be removed
via a cluster decomposition procedure, making it possible to examine the
importance of connected excitations in complicated multireference molecules
which are outside the reach of conventional algorithms. We present an
implementation of the cluster decomposition analysis and apply it to both true
FCI wave functions, as well as wave functions generated from the adaptive
sampling CI (ASCI) algorithm. The cluster decomposition is useful for
interpreting calculations in chemical studies, as a diagnostic for the
convergence of various excitation manifolds, as well as as a guidepost for
polynomially scaling electronic structure models. Applications are presented
for (i) the double dissociation of water, (ii) the carbon dimer, (iii) the
{\pi} space of polyacenes, as well as (iv) the chromium dimer. While the
cluster amplitudes exhibit rapid decay with increasing rank for the first three
systems, even connected octuple excitations still appear important in Cr,
suggesting that spin-restricted single-reference coupled-cluster approaches may
not be tractable for some problems in transition metal chemistry.Comment: 15 pages, 5 figure
Extensive lava flow fields on Venus: Preliminary investigation of source elevation and regional slope variations
Large-volume lava flow fields have been identified on Venus, the most areally extensive of which are known as fluctus and have been subdivided into six morphologic types. Sheetlike flow fields (Type 1) lack the numerous, closely spaced, discrete lava flow lobes that characterize digitate flow fields. Transitional flow fields (Type 2) are similar to sheetlike flow fields but contain one or more broad flow lobes. Digitate flow fields are divided further into divergent (Types 3-5) and subparallel (Type 6) classes on the basis of variations in the amount of downstream flow divergence. As a result of our previous analysis of the detailed morphology, stratigraphy, and tectonic associations of Mylitta Fluctus, we have formulated a number of questions to apply to all large flow fields on Venus. In particular, we would like to address the following: (1) eruption conditions and style of flow emplacement (effusion rate, eruption duration), (2) the nature of magma storage zones (presence of neutral buoyancy zones, deep or shallow crustal magma chambers), (3) the origin of melt and possible link to mantle plumes, and (4) the importance of large flow fields in plains evolution. To answer these questions we have begun to examine variations in flow field dimension and morphology; the distribution of large flow fields in terms of elevation above the mean planetary radius; links to regional tectonic or volcanic structures (e.g., associations with large shield edifices, coronae, or rift zones); statigraphic relationships between large flow fields, volcanic plains, shields, and coronae; and various models of flow emplacement in order to estimate eruption parameters. In this particular study, we have examined the proximal elevations and topographic slopes of 16 of the most distinctive flow fields that represent each of the 6 morphologic types
Universal persistence exponents in an extremally driven system
The local persistence R(t), defined as the proportion of the system still in
its initial state at time t, is measured for the Bak--Sneppen model. For 1 and
2 dimensions, it is found that the decay of R(t) depends on one of two classes
of initial configuration. For a subcritical initial state, R(t)\sim
t^{-\theta}, where the persistence exponent \theta can be expressed in terms of
a known universal exponent. Hence \theta is universal. Conversely, starting
from a supercritical state, R(t) decays by the anomalous form 1-R(t)\sim
t^{\tau_{\rm ALL}} until a finite time t_{0}, where \tau_{\rm ALL} is also a
known exponent. Finally, for the high dimensional model R(t) decays
exponentially with a non--universal decay constant.Comment: 4 pages, 6 figures. To appear in Phys. Rev.
Large-volume lava flow fields on Venus: Dimensions and morphology
Of all the volcanic features identified in Magellan images, by far the most extensive and really important are lava flow fields. Neglecting the widespread lava plains themselves, practically every C1-MIDR produced so far contains several or many discrete lava flow fields. These range in size from a few hundred square kilometers in area (like those fields associated with small volcanic edifices for example), through all sizes up to several hundred thousand square kilometers in extent (such as many rift related fields). Most of these are related to small, intermediate, or large-scale volcanic edifices, coronae, arachnoids, calderas, fields of small shields, and rift zones. An initial survey of 40 well-defined flow fields with areas greater than 50,000 sq km (an arbitrary bound) has been undertaken. Following Columbia River Basalt terminology, these have been termed great flow fields. This represents a working set of flow fields, chosen to cover a variety of morphologies, sources, locations, and characteristics. The initial survey is intended to highlight representative flow fields, and does not represent a statistical set. For each flow field, the location, total area, flow length, flow widths, estimated flow thicknesses, estimated volumes, topographic slope, altitude, backscatter, emissivity, morphology, and source has been noted. The flow fields range from about 50,000 sq km to over 2,500,000 sq km in area, with most being several hundred square kilometers in extent. Flow lengths measure between 140 and 2840 km, with the majority of flows being several hundred kilometers long. A few basic morphological types have been identified
Welfare and Trade without Pareto
Head, Keith Mayer, Thierry Thoenig, Mathias Welfare and Trade without Pareto American Economic Review 104 5 310-16 2014 10.1257/aer.104.5.310 https://www.aeaweb.org/articles?id=10.1257/aer.104.5.31
A deterministic alternative to the full configuration interaction quantum Monte Carlo method
Development of exponentially scaling methods has seen great progress in
tackling larger systems than previously thought possible. One such technique,
full configuration interaction quantum Monte Carlo, is a useful algorithm that
allows exact diagonalization through stochastically sampling determinants. The
method derives its utility from the information in the matrix elements of the
Hamiltonian, along with a stochastic projected wave function, to find the
important parts of Hilbert space. However, the stochastic representation of the
wave function is not required to search Hilbert space efficiently, and here we
describe a highly efficient deterministic method to achieve chemical accuracy
for a wide range of systems, including the difficult Cr dimer. In
addition our method also allows efficient calculation of excited state
energies, for which we illustrate with benchmark results for the excited states
of C.Comment: 4 pages, 2 figure
Electron-vibration interaction in transport through atomic gold wires
We calculate the effect of electron-vibration coupling on conduction through
atomic gold wires, which was measured in the experiments of Agra\"it et al.
[Phys. Rev. Lett. 88, 216803 (2002)]. The vibrational modes, the coupling
constants, and the inelastic transport are all calculated using a tight-binding
parametrization and the non-equilibrium Green function formalism. The
electron-vibration coupling gives rise to small drops in the conductance at
voltages corresponding to energies of some of the vibrational modes. We study
systematically how the position and height of these steps vary as a linear wire
is stretched and more atoms are added to it, and find a good agreement with the
experiments. We also consider two different types of geometries, which are
found to yield qualitatively similar results. In contrast to previous
calculations, we find that typically there are several close-lying drops due to
different longitudinal modes. In the experiments, only a single drop is usually
visible, but its width is too large to be accounted for by temperature.
Therefore, to explain the experimental results, we find it necessary to
introduce a finite broadening to the vibrational modes, which makes the
separate drops merge into a single, wide one. In addition, we predict how the
signatures of vibrational modes in the conductance curves differ between linear
and zigzag-type wires.Comment: 19 pages, 12 figure
Recommended from our members
Brain-Blood Partition Coefficient and Cerebral Blood Flow in Canines Using Calibrated Short TR Recovery (CaSTRR) Correction Method.
The brain-blood partition coefficient (BBPC) is necessary for quantifying cerebral blood flow (CBF) when using tracer based techniques like arterial spin labeling (ASL). A recent improvement to traditional MRI measurements of BBPC, called calibrated short TR recovery (CaSTRR), has demonstrated a significant reduction in acquisition time for BBPC maps in mice. In this study CaSTRR is applied to a cohort of healthy canines (n = 17, age = 5.0 - 8.0 years) using a protocol suited for application in humans at 3T. The imaging protocol included CaSTRR for BBPC maps, pseudo-continuous ASL for CBF maps, and high resolution anatomical images. The standard CaSTRR method of normalizing BBPC to gadolinium-doped deuterium oxide phantoms was also compared to normalization using hematocrit (Hct) as a proxy value for blood water content. The results show that CaSTRR is able to produce high quality BBPC maps with a 4 min acquisition time. The BBPC maps demonstrate significantly higher BBPC in gray matter (0.83 ± 0.05 mL/g) than in white matter (0.78 ± 0.04 mL/g, p = 0.006). Maps of CBF acquired with pCASL demonstrate a negative correlation between gray matter perfusion and age (p = 0.003). Voxel-wise correction for BBPC is also shown to improve contrast to noise ratio between gray and white matter in CBF maps. A novel aspect of the study was to show that that BBPC measurements can be calculated based on the known Hct of the blood sample placed in scanner. We found a strong correlation (R 2 = 0.81 in gray matter, R 2 = 0.59 in white matter) established between BBPC maps normalized to the doped phantoms and BBPC maps normalized using Hct. This obviates the need for doped water phantoms which simplifies both the acquisition protocol and the post-processing methods. Together this suggests that CaSTRR represents a feasible, rapid method to account for BBPC variability when quantifying CBF. As canines have been used widely for aging and Alzheimer's disease studies, the CaSTRR method established in the animals may further improve CBF measurements and advance our understanding of cerebrovascular changes in aging and neurodegeneration
- …