610 research outputs found

    Migration in far West Nepal. Challenging migration categories and theoretical lenses

    Full text link
    In this reply to Ronald Skeldon’s comment on their article, “Migration in Far West Nepal” (Critical Asian Studies 43 (1) 2011), the authors stress the need to overcome the categorical dichotomy between “international” and “internal” migration by thoroughly considering the conditions and characteristics different types of cross-border regimes encompass for migrants. They furthermore argue that choosing the “right” theoretical approach or conceptual framework depends on the kinds of research questions that need to be answered. By understanding migration as a social practice, the authors favor a multi-dimensional approach to migration, one that does not place economic motives over others. Ultimately, they call for a reconciliation of different—competing—perspectives on migration

    Transhiatal and transthoracic resection in adenocarcinoma of the esophagus: Does the operative approach have an influence on the long-term prognosis?

    Get PDF
    BACKGROUND: The goal of the present analysis was to investigate the long-term prognosis for adenocarcinoma of the esophagus treated with either the transhiatal (TH) or the transthoracic (TT) operative approach. METHODS: Between September 1985 and March 2004, esophageal resection due to carcinoma was performed on a total of 424 patients. This manuscript takes into account the 150 patients suffering from adenocarcinoma of the esophagus in whom a transhiatal resection of the esophagus was performed. In the event of transmural tumor growth and a justifiable risk of surgery, the transthoracic resection was selected. An extended mediastinal lymph node dissection, however, was only carried out in the course of the transthoracic approach. RESULTS: The transthoracic resection of the esophagus demonstrated a higher rate of general complications (p = 0.011) as well as a higher mortality rate (p = 0.011). The mediastinal dissection of the lymph nodes, however, revealed no prognostic influence. Considering all of the 150 patients with adenocarcinoma, as well as only those patients who had undergone curative resections (R0), the transhiatal approach was seen to demonstrate a better five-year survival rate of 32.1% versus 35.1%, with a median survival time of 24 versus 28 months, as compared with those who had undergone a transthoracic approach with a five-year survival rate of 13.6% (all patients) versus 17.7% (R0 resection) with a median survival time of 16 versus 17 months (p < 0.05). CONCLUSION: The prognosis in patients with adenocarcinoma of the esophagus is influenced by the depth of the tumor (pT) and the pM-category, as shown in the multivariate analysis. The present analysis did not demonstrate a relevant difference in survival for patients with N0 and N1 stages undergoing transhiatal or transthoracic esophagectomy. It is questionable, if a more extensive mediastinal lymph node dissection, in addition to the clearance of abdominal lymph nodes, offers prognostic advantages in adenocarcinoma of the esophagus. However, the morbidity and mortality associated with the transthoracic approach is higher

    Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations

    Get PDF
    This study uses a geographically-explicit cost optimization model to analyze the impact of and interrelation between four cost reduction strategies for biofuel production: economies of scale, intermodal transport, integration with existing industries, and distributed supply chain configurations (i.e. supply chains with an intermediate pre-treatment step to reduce biomass transport cost). The model assessed biofuel production levels ranging from 1 to 150 PJ a−1 in the context of the existing Swedish forest industry. Biofuel was produced from forestry biomass using hydrothermal liquefaction and hydroprocessing. Simultaneous implementation of all cost reduction strategies yielded minimum biofuel production costs of 18.1–18.2 € GJ−1 at biofuel production levels between 10 and 75 PJ a−1. Limiting the economies of scale was shown to cause the largest cost increase (+0–12%, increasing with biofuel production level), followed by disabling integration benefits (+1–10%, decreasing with biofuel production level) and allowing unimodal truck transport only (+0–6%, increasing with biofuel production level). Distributed supply chain configurations were introduced once biomass supply became increasingly dispersed, but did not provide a significant cost benefit (<1%). Disabling the benefits of integration favors large-scale centralized production, while intermodal transport networks positively affect the benefits of economies of scale. As biofuel production costs still exceeds the price of fossil transport fuels in Sweden after implementation of all cost reduction strategies, policy support and stimulation of further technological learning remains essential to achieve cost parity with fossil fuels for this feedstock/technology combination in this spatiotemporal context

    Depth-resolved measurements of the Meissner screening profile in surface-treated Nb

    Full text link
    We report depth-resolved measurements of the Meissner screening profile in several surface-treated Nb samples using low-energy muon spin rotation (LE-Ό\muSR). In these experiments, implanted positive muons, whose stopping depths below Nb's surface were adjusted between ~10 nm to ~150 nm, reveal the field distribution inside the superconducting element via their spin-precession (communicated through their radioactive decay products). We compare how the field screening is modified by different surface treatments commonly employed to prepare superconducting radio frequency (SRF) cavities used in accelerator beamlines. In contrast to an earlier report [A. Romanenko et al., Appl. Phys. Lett. 104 072601 (2014)], we find no evidence for any "anomalous" modifications to the Meissner profiles, with all data being well-described by a London model. Differences in screening properties between surface treatments can be explained by changes to the carrier mean-free-paths resulting from dopant profiles near the material's surface.Comment: 15 pages, 5 figures, 2 table

    Current and future technical, economic and environmental feasibility of maize and wheat residues supply for biomass energy application:Illustrated for South Africa

    Get PDF
    AbstractThis study assessed the feasibility of mobilising maize and wheat residues for large-scale bioenergy applications in South Africa by establishing sustainable residue removal rates and cost of supply based on different production regions. A key objective was to refine the methodology for estimating crop residue harvesting for bioenergy use, while maintaining soil productivity and avoiding displacement of competing residue uses. At current conditions, the sustainable bioenergy potential from maize and wheat residues was estimated to be about 104 PJ. There is potential to increase the amount of crop residues to 238 PJ through measures such as no till cultivation and adopting improved cropping systems. These estimates were based on minimum residues requirements of 2 t ha−1 for soil erosion control and additional residue amounts to maintain 2% SOC level.At the farm gate, crop residues cost between 0.9 and 1.7 GJ−1.About96 GJ−1. About 96% of these residues are available below 1.5 GJ−1. In the improved scenario, up to 85% of the biomass is below 1.3 GJ−1.Forbiomassdeliveriesattheconversionplant,about36 GJ−1. For biomass deliveries at the conversion plant, about 36% is below 5 GJ−1 while in the optimised scenario, about 87% is delivered below 5$ GJ−1. Co-firing residues with coal results in lower cost of electricity compared to other renewables and significant GHG (CO2 eq) emissions reduction (up to 0.72 tons MWh−1). Establishing sustainable crop residue supply systems in South Africa could start by utilising the existing agricultural infrastructure to secure supply and develop a functional market. It would then be necessary to incentivise improvements across the value chain

    Coaxial multi-mode cavities for fundamental SRF research in an unprecedented parameter space

    Full text link
    Recent developments in superconducting radio-frequency (SRF) research have focused primarily on high frequency elliptical cavities for electron accelerators. Advances have been made in both reducing RF surface resistance and pushing the readily achievable accelerating gradient by using novel SRF cavity treatments including surface processing, custom heat treatments, and flux expulsion. Despite the global demand for SRF based hadron accelerators, the advancement of TEM mode cavities has lagged behind. To address this, two purpose-built research cavities, one quarter-wave and one half-wave resonator, have been designed and built to allow characterization of TEM-mode cavities with standard and novel surface treatments. The cavities are intended as the TEM mode equivalent to the 1.3GHz single cell cavity, which is the essential tool for high frequency cavity research. Given their coaxial structure, the cavities allow testing at the fundamental mode and higher harmonics, giving unique insight into the role of RF frequency on fundamental loss mechanisms from intrinsic and extrinsic sources. In this paper, the cavities and testing infrastructure are described and the first performance measurements of both cavities are presented

    Biowaiver monographs for immediate release solid oral dosage forms: prednisolone.

    Get PDF
    Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing prednisolone are reviewed. Data on its solubility, oral absorption, and permeability are not totally conclusive, but strongly suggest a BCS Class 1 classification. Prednisolone's therapeutic indications and therapeutic index, pharmacokinetics, and the possibility of excipient interactions were also taken into consideration. Available evidence indicates that a biowaiver for IR solid oral dosage forms formulated with the excipients tabulated in this article would be unlikely to expose patients to undue risks

    Direct measurement of the Meissner screening profile in superconductor-superconductor bilayers using low-energy muon spin rotation

    Full text link
    Superconducting radio frequency (SRF) cavities, which are critical components in many particle accelerators, need to be operated in the Meissner state to avoid strong dissipation from magnetic vortices. For a defect-free superconductor, the maximum attainable magnetic field for operation is set by the superheating field, BshB_{\mathrm{sh}}, which directly depends on the surface current. In heterostructures composed of different superconductors, the current in each layer depends not only on the properties of the individual material, but also on the electromagnetic response of the adjacent layers through boundary conditions at the interfaces. Three prototypical bilayers [Nb1−xTixN\mathrm{Nb_{1-x}Ti_xN}(50 nm)/Nb, Nb1−xTixN\mathrm{Nb_{1-x}Ti_xN}(80 nm)/Nb, and Nb1−xTixN\mathrm{Nb_{1-x}Ti_xN}(160 nm)/Nb] are investigated here by depth-resolved measurements of their Meissner screening profiles using low-energy muon spin rotation (LE-ÎŒ\muSR). From fits to a model based on London theory (with appropriate boundary and continuity conditions), a magnetic penetration depth for the thin Nb1−xTixN\mathrm{Nb_{1-x}Ti_xN} layers of λNb1−xTixN=\lambda_\mathrm{Nb_{1-x}Ti_xN} = 182.5(31) nm is found, in good agreement with literature values for the bulk alloy. In contrast, a simple London model without appropriate boundary conditions overestimates λNb1−xTixN\lambda_\mathrm{Nb_{1-x}Ti_xN} by more than a factor of two, suggesting that it is inappropriate for quantifying λNb1−xTixN\lambda_\mathrm{Nb_{1-x}Ti_xN} here. Using the measured λNb1−xTixN\lambda_\mathrm{Nb_{1-x}Ti_xN}, the maximum vortex-free field, BmaxB_{\mathrm{max}}, of the superconductor-superconductor (SS) bilayer structure was estimated to be 610(40) mT. The strong suppression of the surface current in the Nb1−xTixN\mathrm{Nb_{1-x}Ti_xN} layer suggests an optimal thickness of ∌1.4λNb1−xTixN=\sim 1.4 \lambda_{\mathrm{Nb_{1-x}Ti_xN}} = 261(14) nm.Comment: 13 pages and 8 figure

    Biowaiver monographs for immediate release solid oral dosage forms: acetaminophen (paracetamol).

    Get PDF
    Literature data are reviewed on the properties of acetaminophen (paracetamol) related to the biopharmaceutics classification system (BCS). According to the current BCS criteria, acetaminophen is BCS Class III compound. Differences in composition seldom, if ever, have an effect on the extent of absorption. However, some studies show differences in rate of absorption between brands and formulations. In particular, sodium bicarbonate, present in some drug products, was reported to give an increase in the rate of absorption, probably caused by an effect on gastric emptying. In view of Marketing Authorizations (MAs) given in a number of countries to acetaminophen drug products with rapid onset of action, it is concluded that differences in rate of absorption were considered therapeutically not relevant by the Health Authorities. Moreover, in view of its therapeutic use, its wide therapeutic index and its uncomplicated pharmacokinetic properties, in vitro dissolution data collected according to the relevant Guidances can be safely used for declaring bioequivalence (BE) of two acetaminophen formulations. Therefore, accepting a biowaiver for immediate release (IR) acetaminophen solid oral drug products is considered scientifically justified, if the test product contains only those excipients reported in this paper in their usual amounts and the test product is rapidly dissolving, as well as the test product fulfils the criterion of similarity of dissolution profiles to the reference product
    • 

    corecore