506 research outputs found

    Molecular Line Observations of the Small Protostellar Group L1251B

    Get PDF
    We present molecular line observations of L1251B, a small group of pre- and protostellar objects, and its immediate environment in the dense C18O core L1251E. These data are complementary to near-infrared, submillimeter and millimeter continuum observations reported by Lee et al. (2006, ApJ, 648, 491; Paper I). The single-dish data of L1251B described here show very complex kinematics including infall, rotation and outflow motions, and the interferometer data reveal these in greater detail. Interferometer data of N2H+ 1-0 suggest a very rapidly rotating flattened envelope between two young stellar objects, IRS1 and IRS2. Also, interferometer data of CO 2-1 resolve the outflow associated with L1251B seen in single-dish maps into a few narrow and compact components. Furthermore, the high resolution data support recent theoretical studies of molecular depletions and enhancements that accompany the formation of protostars within dense cores. Beyond L1251B, single-dish data are also presented of a dense core located ~150" to the east that, in Paper I, was detected at 850 micron but has no associated point sources at near- and mid-infrared wavelengths. The relative brightness between molecules, which have different chemical timescales, suggests it is less chemically evolved than L1251B. This core may be a site for future star formation, however, since line profiles of HCO+, CS, and HCN show asymmetry with a stronger blue peak, which is interpreted as an infall signature.Comment: 46 pages, 18 figures. Accepted for publication in Ap

    Validation of vessel size imaging (VSI) in high-grade human gliomas using magnetic resonance imaging, image-guided biopsies, and quantitative immunohistochemistry.

    Get PDF
    To evaluate the association between a vessel size index (VSIMRI) derived from dynamic susceptibility contrast (DSC) perfusion imaging using a custom spin-and-gradient echo echoplanar imaging (SAGE-EPI) sequence and quantitative estimates of vessel morphometry based on immunohistochemistry from image-guided biopsy samples. The current study evaluated both relative cerebral blood volume (rCBV) and VSIMRI in eleven patients with high-grade glioma (7 WHO grade III and 4 WHO grade IV). Following 26 MRI-guided glioma biopsies in these 11 patients, we evaluated tissue morphometry, including vessel density and average radius, using an automated procedure based on the endothelial cell marker CD31 to highlight tumor vasculature. Measures of rCBV and VSIMRI were then compared to histological measures. We demonstrate good agreement between VSI measured by MRI and histology; VSIMRI = 13.67 μm and VSIHistology = 12.60 μm, with slight overestimation of VSIMRI in grade III patients compared to histology. rCBV showed a moderate but significant correlation with vessel density (r = 0.42, p = 0.03), and a correlation was also observed between VSIMRI and VSIHistology (r = 0.49, p = 0.01). The current study supports the hypothesis that vessel size measures using MRI accurately reflect vessel caliber within high-grade gliomas, while traditional measures of rCBV are correlated with vessel density and not vessel caliber

    Characterizing Child Head Motions Relative to Vehicle Rear Seat Compartment in Motor Vehicle Crashes

    Full text link
    Technical Report FinalImproved padding or other countermeasures in vehicle rear compartments could reduce the incidence of head trauma for child occupants. However, knowledge of likely child head impact locations for a range of crash scenarios is needed to determine which areas and structures should be padded and where a side curtain should be deployed to protect child occupants. The objective of this study is to use a scalable MAthematical DYnamic MOdels (MADYMO) model of a child occupant to estimate the distributions of possible head impact locations as a function of crash type, vehicle interior characteristics, and child size. To achieve this goal, a series of simulations using a scalable MADYMO child-ATD model was conducted. The geometries of the second-row compartment from 5 vehicles were recorded using a laser scanner to provide high-resolution data for assessing probable head contact zones. Distributions of lateral and longitudinal delta V were calculated as a function of PDOF using the NASS-CDS dataset to provide proper simulation conditions based on real-world crashes. Simulations of crashes ranging from pure frontal to pure side impact (9 o’clock to 3 o’clock) with child ATDs with and without backless boosters were conducted using UMTRI’s parametric child ATD model in MADYMO, UMTRI's child ATD positioning procedure, and UMTRI's automated belt-fit and crash simulation system. The simulation results were used to create a model of the spatial distribution of head trajectories based on child body size and crash direction. By combining the head motion model and the vehicle second-row geometry models, the likely head contact zones with respect to interior components were identified. The findings of this study provide a reference for future vehicle rear compartment design to reduce head injuries for older children.National Highway Traffic Safety Administrationhttps://deepblue.lib.umich.edu/bitstream/2027.42/154006/1/UMTRI-2012-20.pd
    corecore