We present molecular line observations of L1251B, a small group of pre- and
protostellar objects, and its immediate environment in the dense C18O core
L1251E. These data are complementary to near-infrared, submillimeter and
millimeter continuum observations reported by Lee et al. (2006, ApJ, 648, 491;
Paper I). The single-dish data of L1251B described here show very complex
kinematics including infall, rotation and outflow motions, and the
interferometer data reveal these in greater detail. Interferometer data of N2H+
1-0 suggest a very rapidly rotating flattened envelope between two young
stellar objects, IRS1 and IRS2. Also, interferometer data of CO 2-1 resolve the
outflow associated with L1251B seen in single-dish maps into a few narrow and
compact components. Furthermore, the high resolution data support recent
theoretical studies of molecular depletions and enhancements that accompany the
formation of protostars within dense cores. Beyond L1251B, single-dish data are
also presented of a dense core located ~150" to the east that, in Paper I, was
detected at 850 micron but has no associated point sources at near- and
mid-infrared wavelengths. The relative brightness between molecules, which have
different chemical timescales, suggests it is less chemically evolved than
L1251B. This core may be a site for future star formation, however, since line
profiles of HCO+, CS, and HCN show asymmetry with a stronger blue peak, which
is interpreted as an infall signature.Comment: 46 pages, 18 figures. Accepted for publication in Ap