10 research outputs found

    Does gated beam delivery impact delivery accuracy on an Elekta linac?

    Get PDF
    In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. Delivery accuracy was examined with an emphasis on the impact of using short gating windows (low monitor unit beam-on segments) or long beam hold times. The performance was assessed using a 20cm by 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Gated delivery measurements were also performed for two SBRT plans delivered using volumetric modulated arc therapy (VMAT). Tests included both free-breathing based gating (covering a variety of gating windows) and simulated breath-hold based gating. An IBA MatriXX 2D ion chamber array was used for data collection, and the gating accuracy at low MU was evaluated using gamma passing rates. For the 20 cm by 20 cm open field, the measurements generally showed close agreement between the gated and non-gated beam deliveries. Discrepancies, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on times. The discrepancies observed for these tight gating windows can be attributed to the small number of monitor units delivered during each beam-on segment. Dose distribution analysis from the delivery of the two SBRT plans showed gamma passing rates (± 1%, 2%/1 mm) in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma passing rate of free-breathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. In conclusion, the results demonstrate that Elekta linacs can accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. Some caution should be exercised with the use of very tight gating windows

    Volumetric CT-based segmentation of NSCLC using 3D-Slicer

    Get PDF
    Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the “gold standard”. The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81–0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck

    Characterization and spectral study of 1,4-dimethylquinoxaline-2,3-dione potassium iodide complex

    No full text
    1,4-Dimethylquinoxaline-2,3-dione potassium iodide complex was prepared, and its structure was determined by single crystal X-ray diffraction. Elsewhere, solvent effects on the energy of excited and ground states of the complex in solution have been investigated by absorption and fluorescence spectroscopy. The change displayed by the photophysical properties of this complex in different solvents can be explained in terms of a sum of dielectric and hydrogen bonding effects taking part in the stabilization or destabilization of the structure
    corecore