1,070 research outputs found

    Existence of Universal Entangler

    Full text link
    A gate is called entangler if it transforms some (pure) product states to entangled states. A universal entangler is a gate which transforms all product states to entangled states. In practice, a universal entangler is a very powerful device for generating entanglements, and thus provides important physical resources for accomplishing many tasks in quantum computing and quantum information. This Letter demonstrates that a universal entangler always exists except for a degenerated case. Nevertheless, the problem how to find a universal entangler remains open.Comment: 4 page

    Correlations in excited states of local Hamiltonians

    Full text link
    Physical properties of the ground and excited states of a kk-local Hamiltonian are largely determined by the kk-particle reduced density matrices (kk-RDMs), or simply the kk-matrix for fermionic systems---they are at least enough for the calculation of the ground state and excited state energies. Moreover, for a non-degenerate ground state of a kk-local Hamiltonian, even the state itself is completely determined by its kk-RDMs, and therefore contains no genuine >k{>}k-particle correlations, as they can be inferred from kk-particle correlation functions. It is natural to ask whether a similar result holds for non-degenerate excited states. In fact, for fermionic systems, it has been conjectured that any non-degenerate excited state of a 2-local Hamiltonian is simultaneously a unique ground state of another 2-local Hamiltonian, hence is uniquely determined by its 2-matrix. And a weaker version of this conjecture states that any non-degenerate excited state of a 2-local Hamiltonian is uniquely determined by its 2-matrix among all the pure nn-particle states. We construct explicit counterexamples to show that both conjectures are false. It means that correlations in excited states of local Hamiltonians could be dramatically different from those in ground states. We further show that any non-degenerate excited state of a kk-local Hamiltonian is a unique ground state of another 2k2k-local Hamiltonian, hence is uniquely determined by its 2k2k-RDMs (or 2k2k-matrix)

    From Ground States to Local Hamiltonians

    Full text link
    Traditional quantum physics solves ground states for a given Hamiltonian, while quantum information science asks for the existence and construction of certain Hamiltonians for given ground states. In practical situations, one would be mainly interested in local Hamiltonians with certain interaction patterns, such as nearest neighbour interactions on some type of lattices. A necessary condition for a space VV to be the ground-state space of some local Hamiltonian with a given interaction pattern, is that the maximally mixed state supported on VV is uniquely determined by its reduced density matrices associated with the given pattern, based on the principle of maximum entropy. However, it is unclear whether this condition is in general also sufficient. We examine the situations for the existence of such a local Hamiltonian to have VV satisfying the necessary condition mentioned above as its ground-state space, by linking to faces of the convex body of the local reduced states. We further discuss some methods for constructing the corresponding local Hamiltonians with given interaction patterns, mainly from physical points of view, including constructions related to perturbation methods, local frustration-free Hamiltonians, as well as thermodynamical ensembles.Comment: 11 pages, 2 figures, to be published in PR

    No-go Theorem for One-way Quantum Computing on Naturally Occurring Two-level Systems

    Full text link
    One-way quantum computing achieves the full power of quantum computation by performing single particle measurements on some many-body entangled state, known as the resource state. As single particle measurements are relatively easy to implement, the preparation of the resource state becomes a crucial task. An appealing approach is simply to cool a strongly correlated quantum many-body system to its ground state. In addition to requiring the ground state of the system to be universal for one-way quantum computing, we also want the Hamiltonian to have non-degenerate ground state protected by a fixed energy gap, to involve only two-body interactions, and to be frustration-free so that measurements in the course of the computation leave the remaining particles in the ground space. Recently, significant efforts have been made to the search of resource states that appear naturally as ground states in spin lattice systems. The approach is proved to be successful in spin-5/2 and spin-3/2 systems. Yet, it remains an open question whether there could be such a natural resource state in a spin-1/2, i.e., qubit system. Here, we give a negative answer to this question by proving that it is impossible for a genuinely entangled qubit states to be a non-degenerate ground state of any two-body frustration-free Hamiltonian. What is more, we prove that every spin-1/2 frustration-free Hamiltonian with two-body interaction always has a ground state that is a product of single- or two-qubit states, a stronger result that is interesting independent of the context of one-way quantum computing.Comment: 5 pages, 1 figur

    Ground-State Spaces of Frustration-Free Hamiltonians

    Full text link
    We study the ground-state space properties for frustration-free Hamiltonians. We introduce a concept of `reduced spaces' to characterize local structures of ground-state spaces. For a many-body system, we characterize mathematical structures for the set Θk\Theta_k of all the kk-particle reduced spaces, which with a binary operation called join forms a semilattice that can be interpreted as an abstract convex structure. The smallest nonzero elements in Θk\Theta_k, called atoms, are analogs of extreme points. We study the properties of atoms in Θk\Theta_k and discuss its relationship with ground states of kk-local frustration-free Hamiltonians. For spin-1/2 systems, we show that all the atoms in Θ2\Theta_2 are unique ground states of some 2-local frustration-free Hamiltonians. Moreover, we show that the elements in Θk\Theta_k may not be the join of atoms, indicating a richer structure for Θk\Theta_k beyond the convex structure. Our study of Θk\Theta_k deepens the understanding of ground-state space properties for frustration-free Hamiltonians, from a new angle of reduced spaces.Comment: 23 pages, no figur

    Interaction of the Bovine Papillomavirus E2 Protein with Brd4 Tethers the Viral DNA to Host Mitotic Chromosomes

    Get PDF
    AbstractThe papillomavirus E2 protein tethers viral genomes to host mitotic chromosomes to ensure genome maintenance. We have identified the bromodomain protein Brd4 as a major cellular interacting partner of the bovine papillomavirus E2. Brd4 associates with mitotic chromosomes and colocalizes with E2 on mitotic chromosomes. The site of E2 binding maps to the C-terminal domain of Brd4. Expression of this C-terminal Brd4 domain functions in a dominant-negative manner to abrogate the colocalization of E2 with Brd4 on mitotic chromosomes, to block association of the viral episomes with Brd4, and to inhibit BPV-1 DNA-mediated cellular transformation. Brd4 also associates with HPV16 E2, indicating that Brd4 binding may be a shared property of all papillomavirus E2 proteins. The interaction of E2 with Brd4 is required to ensure the tethering of viral genomes to the host mitotic chromosomes for persistence of viral episomes in PV-infected cells

    Stigma never dies: Mourning a spouse who died of AIDS in China

    Get PDF
    Stigma towards people with HIV (PHIV) can affect their family members. In this study of 68 HIV seronegative participants in China whose spouse died of AIDS, 35.3% reported prolonged grief. Stigma beliefs towards PHIV (i.e., belief that PHIV's death leaves the deceased, the family and society better off) predicted grief symptoms. Social campaigns to combat stigma and grief therapy to reconstruct the meaning of HIV-related death may be helpful to reduce suffering in HIV bereaved. (C) 2015 Elsevier Ireland Ltd. All rights reserved

    Fine-grained Spatio-Temporal Distribution Prediction of Mobile Content Delivery in 5G Ultra-Dense Networks

    Full text link
    The 5G networks have extensively promoted the growth of mobile users and novel applications, and with the skyrocketing user requests for a large amount of popular content, the consequent content delivery services (CDSs) have been bringing a heavy load to mobile service providers. As a key mission in intelligent networks management, understanding and predicting the distribution of CDSs benefits many tasks of modern network services such as resource provisioning and proactive content caching for content delivery networks. However, the revolutions in novel ubiquitous network architectures led by ultra-dense networks (UDNs) make the task extremely challenging. Specifically, conventional methods face the challenges of insufficient spatio precision, lacking generalizability, and complex multi-feature dependencies of user requests, making their effectiveness unreliable in CDSs prediction under 5G UDNs. In this paper, we propose to adopt a series of encoding and sampling methods to model CDSs of known and unknown areas at a tailored fine-grained level. Moreover, we design a spatio-temporal-social multi-feature extraction framework for CDSs hotspots prediction, in which a novel edge-enhanced graph convolution block is proposed to encode dynamic CDSs networks based on the social relationships and the spatio features. Besides, we introduce the Long-Short Term Memory (LSTM) to further capture the temporal dependency. Extensive performance evaluations with real-world measurement data collected in two mobile content applications demonstrate the effectiveness of our proposed solution, which can improve the prediction area under the curve (AUC) by 40.5% compared to the state-of-the-art proposals at a spatio granularity of 76m, with up to 80% of the unknown areas
    corecore