2,848 research outputs found

    On the relationship between sigma models and spin chains

    Full text link
    We consider the two-dimensional O(3)\rm O(3) non-linear sigma model with topological term using a lattice regularization introduced by Shankar and Read [Nucl.Phys. B336 (1990), 457], that is suitable for studying the strong coupling regime. When this lattice model is quantized, the coefficient Ξ\theta of the topological term is quantized as Ξ=2πs\theta=2\pi s, with ss integer or half-integer. We study in detail the relationship between the low energy behaviour of this theory and the one-dimensional spin-ss Heisenberg model. We generalize the analysis to sigma models with other symmetries.Comment: To appear in Int. J. MOd. Phys.

    Control of the cation occupancies of MnZn ferrite synthesized via reverse micelles

    Get PDF
    Variations in cation occupancy in mixed metal ferrite systems can affect their electronic and magnetic properties. It is known that different synthesis parameters can lead to various cation distributions and the ability to tune these distributions is of great interest. This study uses the extended x-ray-absorption fine structure–IR relationship to investigate the effect of various Fe2+/Fe3+ ratios in initial synthesis conditions on cation distribution for manganesezincferrite (MZFO). Differences in the precipitated material before firing could lead to differences in the final material if fired under similar conditions. This work uses several different ratios of Fe3+/Fe2+, which will affect the initial cell potential for the reaction, to synthesize nano MZFO. All samples were fired for 5h at 500°C under flowing nitrogen. Transmission electron microscopy micrographs reveal highly crystalline uniform nanoparticles of 16±2nm. The x-ray diffraction revealed single phase crystalline MZFO with an average crystallite size of around 14nm. The saturation magnetization ranged from 43to68emu∕g as measured by vibrating-sample magnetometry. The Fourier transform infrared (FTIR) analysis was used to determine the cation occupancies while changing the initial Fe3+/Fe2+ ratios from 10∕90 to90∕10. The FTIRspectra revealed a shift in the first absorption region in the far IR from 566.98to549.62cm−1 corresponding to the octahedral occupancies. This shift corresponds to a change in the percentage of octahedral sites occupied by manganese from roughly 25% to 12%. This change in manganese occupancy is also observed in the iron occupancies, which in turn help to explain the variation in saturation magnetization

    Searching for Weak or Complex Magnetic Fields in Polarized Spectra of Rigel

    Full text link
    Seventy-eight high-resolution Stokes V, Q and U spectra of the B8Iae supergiant Rigel were obtained with the ESPaDOnS spectropolarimeter at CFHT and its clone NARVAL at TBL in the context of the Magnetism in Massive Stars (MiMeS) Large Program, in order to scrutinize this core-collapse supernova progenitor for evidence of weak and/or complex magnetic fields. In this paper we describe the reduction and analysis of the data, the constraints obtained on any photospheric magnetic field, and the variability of photospheric and wind lines.Comment: IAUS272 - Active OB Stars: Structure, Evolution, Mass Loss and Critical Limit

    MOBSTER – III. HD 62658: a magnetic Bp star in an eclipsing binary with a non-magnetic ‘identical twin’

    Get PDF
    HD 62658 (B9p V) is a little-studied chemically peculiar star. Light curves obtained by the Kilodegree Extremely Little Telescope (KELT) and Transiting Exoplanet Survey Satellite (TESS) show clear eclipses with a period of about 4.75 d, as well as out-of-eclipse brightness modulation with the same 4.75 d period, consistent with synchronized rotational modulation of surface chemical spots. High-resolution ESPaDOnS circular spectropolarimetry shows a clear Zeeman signature in the line profile of the primary; there is no indication of a magnetic field in the secondary. PHOEBE modelling of the light curve and radial velocities indicates that the two components have almost identical masses of about 3 M_⊙. The primary’s longitudinal magnetic field〈B_zâŒȘ varies between about +100 and −250 G, suggesting a surface magnetic dipole strength B_d = 850 G. Bayesian analysis of the Stokes V profiles indicates B_d = 650 G for the primary and B_d < 110 G for the secondary. The primary’s line profiles are highly variable, consistent with the hypothesis that the out-of-eclipse brightness modulation is a consequence of rotational modulation of that star’s chemical spots. We also detect a residual signal in the light curve after removal of the orbital and rotational modulations, which might be pulsational in origin; this could be consistent with the weak line profile variability of the secondary. This system represents an excellent opportunity to examine the consequences of magnetic fields for stellar structure via comparison of two stars that are essentially identical with the exception that one is magnetic. The existence of such a system furthermore suggests that purely environmental explanations for the origin of fossil magnetic fields are incomplete

    The constant magnetic field of xi 1 CMa: geometry or slow rotation?

    Full text link
    We report recent observations of the sharp-lined magnetic beta Cep pulsator xi 1 CMa (= HD 46328). The longitudinal magnetic field of this star is detected consistently, but it is not observed to vary strongly, during nearly 5 years of observation. In this poster we evaluate whether the nearly constant longitudinal field is due to intrinsically slow rotation, or rather if the stellar or magnetic geometry is responsible

    Photometric variability of the LAMOST sample of magnetic chemically peculiar stars as seen by TESS

    Full text link
    High-quality light curves from space missions have opened up a new window on the rotational and pulsational properties of magnetic chemically peculiar (mCP) stars and have fuelled asteroseismic studies. They allow the internal effects of surface magnetic fields to be probed and numerous astrophysical parameters to be derived with great precision. We present an investigation of the photometric variability of a sample of 1002 mCP stars discovered in the LAMOST archival spectra with the aims of measuring their rotational periods and identifying interesting objects for follow-up studies. TESS photometry was available for 782 mCP stars and was analysed using a Fourier two-term frequency fit to determine the stars' rotational periods. The rotational signal was then subtracted from the light curve to identify non-rotational variability. A pixel-level blending analysis was performed to check whether the variability originates in the target star or a nearby blended neighbour. We investigated correlations between the rotational periods, fractional age on the main sequence, mass, and several other observables. We present rotational periods and period estimates for 720 mCP stars. In addition, we identified four eclipsing binary systems that likely host an mCP star, as well as 25 stars with additional signals consistent with pulsation (12 stars with frequencies above 10 d−1^{-1} and 13 stars with frequencies below 10 −1^{-1}). We find that more evolved stars have longer rotation periods, in agreement with the assumption of the conservation of angular momentum during main-sequence evolution. With our work, we increase the sample size of mCP stars with known rotation periods and identify prime candidates for detailed follow-up studies. This enables two paths towards future investigations: population studies of even larger samples of mCP stars and the detailed characterisation of high-value targets.Comment: 30 pages, 9 figures, 1 table. Accepted for publication in the Journal of Astronomy and Astrophysics (A&A

    Investigating the origin of cyclical wind variability in hot, massive stars - I. On the dipolar magnetic field hypothesis

    Get PDF
    OB stars exhibit various types of spectral variability associated with wind structures, including the apparently ubiquitous discrete absorption components (DACs). These are proposed to be caused by either magnetic fields or non-radial pulsations (NRPs). In this paper, we evaluate the possible relation between large-scale, dipolar magnetic fields and the DAC phenomenon by investigating the magnetic properties of a sample of 13 OB stars exhibiting well-documented DAC behaviour. Using high-precision spectropolarimetric data acquired in part in the context of the Magnetism in Massive Stars (MiMeS) project, we find no evidence for surface dipolar magnetic fields in any of these stars. Using Bayesian inference, we compute upper limits on the strengths of the fields and use these limits to assess two potential mechanisms by which the field may influence wind outflow: magnetic wind confinement and local photospheric brightness enhancements. Within the limits we derive, both mechanisms fail to provide a systematic process capable of producing DACs in all of the stars of our sample. Therefore, this implies that dipolar fields are highly unlikely to be responsible for these structures in all massive stars, meaning that some other mechanism must come into play.Comment: 17 pages, 6 figures, accepted for publication in MNRA
    • 

    corecore