2,382 research outputs found

    Applying Human-performance Models to Designing and Evaluating Nuclear Power Plants: Review Guidance and Technical Basis

    Get PDF
    Human performance models (HPMs) are simulations of human behavior with which we can predict human performance. Designers use them to support their human factors engineering (HFE) programs for a wide range of complex systems, including commercial nuclear power plants. Applicants to U.S. Nuclear Regulatory Commission (NRC) can use HPMs for design certifications, operating licenses, and license amendments. In the context of nuclear-plant safety, it is important to assure that HPMs are verified and validated, and their usage is consistent with their intended purpose. Using HPMs improperly may generate misleading or incorrect information, entailing safety concerns. The objective of this research was to develop guidance to support the NRC staff's reviews of an applicant's use of HPMs in an HFE program. The guidance is divided into three topical areas: (1) HPM Verification, (2) HPM Validation, and (3) User Interface Verification. Following this guidance will help ensure the benefits of HPMs are achieved in a technically sound, defensible manner. During the course of developing this guidance, I identified several issues that could not be addressed; they also are discussed

    All-Optical Production of a Degenerate Fermi Gas

    Full text link
    We achieve degeneracy in a mixture of the two lowest hyperfine states of 6^6Li by direct evaporation in a CO2_2 laser trap, yielding the first all-optically produced degenerate Fermi gas. More than 10510^5 atoms are confined at temperatures below 4μ4 \muK at full trap depth, where the Fermi temperature for each state is 8μ8 \muK. This degenerate two-component mixture is ideal for exploring mechanisms of superconductivity ranging from Cooper pairing to Bose condensation of strongly bound pairs.Comment: 4 pgs RevTeX with 2 eps figs, to be published in Phys. Rev. Let

    Brain natriuretic peptide and NT-proBNP levels reflect pulmonary artery systolic pressure in trekkers at high altitude.

    Get PDF
    Our objective was to evaluate the utility of the natriuretic peptides BNP (brain natriuretic peptide) and NT-proBNP as markers of pulmonary artery systolic pressure (PASP) in trekkers ascending to high altitude (HA). 20 participants had BNP and NT-proBNP assayed and simultaneous echocardiographic assessment of PASP performed during a trek to 5150 m. PASP increased significantly (p=0.006) with ascent from 24+/-4 to 39+/-11 mm Hg at 5150 m. At 5150 m those with a PASP>/=40 mm Hg (n=8) (versus those with PASP/=400 pg/ml) rise in NT-proBNP at 5150 m (n=4) PASP was significantly higher: 45.9+/-7.5 vs. 32.2+/-6.2 mm Hg (p=0.015). BNP and NT-proBNP may reflect elevated PASP, a central feature of high altitude pulmonary oedema, at HA

    Strongly inhibited transport of a 1D Bose gas in a lattice

    Full text link
    We report the observation of strongly damped dipole oscillations of a quantum degenerate 1D atomic Bose gas in a combined harmonic and optical lattice potential. Damping is significant for very shallow axial lattices (0.25 photon recoil energies), and increases dramatically with increasing lattice depth, such that the gas becomes nearly immobile for times an order of magnitude longer than the single-particle tunneling time. Surprisingly, we see no broadening of the atomic quasimomentum distribution after damped motion. Recent theoretical work suggests that quantum fluctuations can strongly damp dipole oscillations of 1D atomic Bose gas, providing a possible explanation for our observations.Comment: 5 pages, 4 figure

    On-chip electrically controlled routing of photons from a single quantum dot

    Get PDF
    Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system. The SAQD is located inside an H1 cavity, which is coupled to two photonic crystal waveguides. The SAQD emission wavelength is electrically tunable by the quantum-confined Stark effect. When the SAQD emission is brought into resonance with one of two H1 cavity modes, it is preferentially routed to the waveguide to which that mode is selectively coupled. This proof of concept provides the basis for scalable, low-power, high-speed operation of single-photon routers for use in integrated quantum photonic circuits
    • …
    corecore