84 research outputs found
The variable phase method used to calculate and correct scattering lengths
It is shown that the scattering length can be obtained by solving a Riccati
equation derived from variable phase theory. Two methods of solving it are
presented. The equation is used to predict how long-range interactions
influence the scattering length, and upper and lower bounds on the scattering
length are determined. The predictions are compared with others and it is shown
how they may be obtained from secular perturbation theory.Comment: 7 pages including 3 figure
Resonance phenomena in ultracold dipole-dipole scattering
Elastic scattering resonances occurring in ultracold collisions of either
bosonic or fermionic polar molecules are investigated. The Born-Oppenheimer
adiabatic representation of the two-bodydynamics provides both a qualitative
classification scheme and a quantitative WKB quantization condition that
predicts several sequences of resonant states. It is found that the
near-threshold energy dependence of ultracold collision cross sections varies
significantly with the particle exchange symmetry, with bosonic systems showing
much smoother energy variations than their fermionic counterparts. Resonant
variations of the angular distributions in ultracold collisions are also
described.Comment: 19 pages, 6 figures, revtex4, submitted to J. Phys.
Hyperspherical Description of the Degenerate Fermi Gas: S-wave Interactions
We present a unique theoretical description of the physics of the spherically
trapped -atom degenerate Fermi gas (DFG) at zero temperature based on an
ordinary Schr\"{o}dinger equation with a microscopic, two body interaction
potential. With a careful choice of coordinates and a variational wavefunction,
the many body Schr\"{o}dinger equation can be accurately described by a
\emph{linear}, one dimensional effective Schr\"{o}dinger equation in a single
collective coordinate, the rms radius of the gas. Comparisons of the energy,
rms radius and peak density of ground state energy are made to those predicted
by Hartree-Fock (HF). Also the lowest radial excitation frequency (the
breathing mode frequency) agrees with a sum rule calculation, but deviates from
a HF prediction
Low energy atomic collision with dipole interactions
We apply quantum defect theory to study low energy ground state atomic
collisions including aligned dipole interactions such as those induced by an
electric field. Our results show that coupled even () relative orbital
angular momentum partial wave channels exhibit shape resonance structures while
odd () channels do not. We analyze and interpret these resonances within the
framework of multichannel quantum defect theory (MQDT).Comment: 27 pages, 17 figures, an inadvertent typo correcte
Quantum Simulations of Extended Hubbard Models with Dipolar Crystals
In this paper we study the realization of lattice models in mixtures of
atomic and dipolar molecular quantum gases. We consider a situation where polar
molecules form a self-assembled dipolar lattice, in which atoms or molecules of
a second species can move and scatter. We describe the system dynamics in a
master equation approach in the Brownian motion limit of slow particles and
fast phonons, which we find appropriate for our system. In a wide regime of
parameters, the reduced dynamics of the particles leads to physical
realizations of extended Hubbard models with tuneable long-range interactions
mediated by crystal phonons. This extends the notion of quantum simulation of
strongly correlated systems with cold atoms and molecules to include
phonon-dynamics, where all coupling parameters can be controlled by external
fields.Comment: 44 pages, 14 figure
Survival of neonates in rural Southern Tanzania: does place of delivery or continuum of care matter?
\ud
The concept of continuum of care has recently been highlighted as a core principle of maternal, newborn and child health initiatives, and as a means to save lives. However, evidence has consistently revealed that access to care during and post delivery (intra and postpartum) remains a challenge in the continuum of care framework. In places where skilled delivery assistance is exclusively available in health facilities, access to health facilities is critical to the survival of the mother and her newborn. However, little is known about the association of place of delivery and survival of neonates. This paper uses longitudinal data generated in a Health and Demographic Surveillance System in rural Southern Tanzania to assess associations of neonatal mortality and place of delivery. Three cohorts of singleton births (born 2005, 2006 and 2007) were each followed up from birth to 28 days. Place of birth was classified as either "health facility" or "community". Neonatal mortality rates were produced for each year and by place of birth. Poisson regression was used to estimate crude relative risks of neonatal death by place of birth. Adjusted ratios were derived by controlling for maternal age, birth order, maternal schooling, sex of the child and wealth status of the maternal household. Neonatal mortality for health facility singleton deliveries in 2005 was 32.3 per 1000 live births while for those born in the community it was 29.7 per 1000 live births. In 2006, neonatal mortality rates were 28.9 and 26.9 per 1,000 live births for deliveries in health facilities and in the community respectively. In 2007 neonatal mortality rates were 33.2 and 27.0 per 1,000 live births for those born in health facilities and in the community respectively. Neonates born in a health facility had similar chances of dying as those born in the community in all the three years of study. Adjusted relative risks (ARR) for neonatal death born in a health facility in 2005, 2006 and 2007 were 0.99 (95% CI: 0.58 - 1.70), 0.98 (95% CI: 0.62 - 1.54) and 1.18 (95% CI: 0.76 - 1.85) respectively. We found no evidence to suggest that delivery in health facilities was associated with better survival chances of the neonates.\u
Cold and Ultracold Molecules: Science, Technology, and Applications
This article presents a review of the current state of the art in the
research field of cold and ultracold molecules. It serves as an introduction to
the Special Issue of the New Journal of Physics on Cold and Ultracold Molecules
and describes new prospects for fundamental research and technological
development. Cold and ultracold molecules may revolutionize physical chemistry
and few body physics, provide techniques for probing new states of quantum
matter, allow for precision measurements of both fundamental and applied
interest, and enable quantum simulations of condensed-matter phenomena.
Ultracold molecules offer promising applications such as new platforms for
quantum computing, precise control of molecular dynamics, nanolithography, and
Bose-enhanced chemistry. The discussion is based on recent experimental and
theoretical work and concludes with a summary of anticipated future directions
and open questions in this rapidly expanding research field.Comment: 82 pages, 9 figures, review article to appear in New Journal of
Physics Special Issue on Cold and Ultracold Molecule
Direct Ubiquitin Independent Recognition and Degradation of a Folded Protein by the Eukaryotic Proteasomes-Origin of Intrinsic Degradation Signals
Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a) origin and identification of an intrinsic degradation signal in the substrate, b) identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c) identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably catalyzed by the ATPases. Apomyoglobin emerges as a new model substrate to further explore the role of ATPases and protein structure in proteasomal degradatio
Unfolding Simulations of Holomyoglobin from Four Mammals: Identification of Intermediates and Ξ²-Sheet Formation from Partially Unfolded States
Myoglobin (Mb) is a centrally important, widely studied mammalian protein. While much work has investigated multi-step unfolding of apoMb using acid or denaturant, holomyoglobin unfolding is poorly understood despite its biological relevance. We present here the first systematic unfolding simulations of holoMb and the first comparative study of unfolding of protein orthologs from different species (sperm whale, pig, horse, and harbor seal). We also provide new interpretations of experimental mean molecular ellipticities of myoglobin intermediates, notably correcting for random coil and number of helices in intermediates. The simulated holoproteins at 310 K displayed structures and dynamics in agreement with crystal structures (R g ~1.48-1.51 nm, helicity ~75%). At 400 K, heme was not lost, but some helix loss was observed in pig and horse, suggesting that these helices are less stable in terrestrial species. At 500 K, heme was lost within 1.0-3.7 ns. All four proteins displayed exponentially decaying helix structure within 20 ns. The C- and F-helices were lost quickly in all cases. Heme delayed helix loss, and sperm whale myoglobin exhibited highest retention of heme and D/E helices. Persistence of conformation (RMSD), secondary structure, and ellipticity between 2-11 ns was interpreted as intermediates of holoMb unfolding in all four species. The intermediates resemble those of apoMb notably in A and H helices, but differ substantially in the D-, E- and F-helices, which interact with heme. The identified mechanisms cast light on the role of metal/cofactor in poorly understood holoMb unfolding. We also observed Ξ²-sheet formation of several myoglobins at 500 K as seen experimentally, occurring after disruption of helices to a partially unfolded, globally disordered state; heme reduced this tendency and sperm-whale did not display any sheet propensity during the simulations
- β¦