51 research outputs found

    Shape Memory Alloys (Part I): Significant Properties

    Get PDF
    U ovom radu naveden je pregled termomehaničkih svojstava slitina s prisjetljivosti oblika i opća obilježja martenzitne transformacije. Slitine s prisjetljivosti oblika pripadaju skupini relativno novih metalnih materijala te se od drugih slitina (npr. dentalnih slitina) razlikuju po pseudoelastičnosti i efektu prisjetljivosti oblika. Pseudoelastičnost je povezana s nastankom martenzita transformacijom austenita. Austenitno-martenzitna transformacija može se inducirati mehaničkim (naprezanje) ili toplinskim (zagrijavanje i hlađenje) metodama. Tijekom martenzitne transformacije ne odvijaju se procesi difuzije, nego dolazi do neelastične deformacije kristalne strukture. Austenitno-martenzitnu transformaciju karakteriziraju temperature početka te zavrÅ”etka austenitne i martenzitne transformacije (As i Af, Ms i Mf). Također su detaljno objaÅ”njeni jednosmjerni, dvosmjerni i viÅ”estruki efekt prisjetljivosti oblika, te je uočeno da je jednosmjerni efekt prisjetljivosti oblika joÅ” uvijek najčeŔće primjenjivan efekt.Shape memory alloys (SMAs) belong to a group of functional materials with the unique property of ā€œrememberingā€ the shape they had before pseudoplastic deformation. Such an effect is based on crystallographic reversible thermo-elastic martensitic transformation. There are two crystal phases in SMAs: the austenite phase (stable at high temperature) and the martensite phase (stable at low temperature). Austenite to martensite phase transformation can be obtained by mechanical (loading) and thermal methods (heating and cooling). During martensitic transformation, no diffusive process is involved, only inelastic deformation of the crystal structure. When the shape memory alloy passes through the phase transformation, the alloy transforms from high ordered phase (austenite) to low ordered phase (martensite). There are two types of martensite transformations. First is temperature-induced martensite, which is also called self-accommodating (twinned) martensite. The second is stress-induced martensite, also called detwinned martensite. The entire austenite to martensite transformation cycle can be described with four characteristic temperatures: Ms ā€“ martensite start temperature, Mf ā€“ martensite finish temperature, As ā€“ austenite start temperature, and Af ā€“ austenite finish temperature. The main factors influencing transformation temperatures are chemical composition, heat treatment procedure, cooling speed, grain size, and number of transformation cycles. As a result of martensitic transformation in SMAs, several thermomechanical phenomena may occur: pseudoelasticity, shape memory effect (one-way and two-way SME) and rubber-like behavior. Pseudoelasticity occurs when the SMA is subjected to a mechanical loading at a constant temperature above Af. The second thermomechanical behaviour that can be observed in SMA is the shape memory effect (SME), mainly one-way SME, which is the most commonly used SME. When the sample is subjected to a mechanical loading, the stress reaches a critical value and the transformation of twinned martensite into detwinned martensite begins and finishes when the loading process is finished. When the loading-unloading process is finished, the SMA presents a residual strain recoverable by alloy heating, which induces the reverse phase transformation. As a result, the alloy recovers to its original shape. In this paper, a review of thermomechanical properties of shape memory alloys and general characteristics of martensite transformations is shown

    Electrochemical and wetting behavior of as-cast Sn-Zn-Sb lead free solders alloys

    Get PDF
    Ternary alloys SnZn12Sb8, SnZn10Sb10, SnZn8Sb12, SnZn6Sb14, and SnZn2Sb18 were prepared by induction melting. Electrochemical behavior and wetting (contact angle) of prepared as-cast samples were investigated using open circuit potential measurement and sessile drop technique. The results of electrochemical investigation show that open-circuit potential, few seconds after immersing of electrodes, shifts toward more negative values, indicating a relatively smaller rate of dissolution during the spontaneous dissolution process under the curentless conditions. After that period, the values of potential tend to be constant with time. It was found that all investigated alloys have poor wettability on copper substrate and the contact angle values decrease with increasing superheat temperature

    Optimization of the aging regime of Al-based alloys

    No full text
    Successful simulation of problems and phenomena related to the changes of the alloys composition is possible by applying simplex plans. The concentration (simplex) triangle application for the design of the optimal regime of Al-5wt%Cu-Pb-Bi alloy aging process is presented in this paper. The iso-lines of the given alloyā€™s mechanical properties in temperature-aging time coordinates were obtained by applying the mathematical models based of the given aging regimes, and the obtained results of changed properties. Regression polynomial of the fourth degree was used as the mathematical model, whereas the effect of the aging regime has been observed through the changes of tensile strength and contraction. Based on the obtained results, we have come to the conclusion that the simplex lattice method can be successfully applied to a great number of heat treatment aspects when with the increase of the temperature the duration time must be reduced, and vice versa (aging, annealing, homogenizing, etc.)

    ALPHA-1 Antitrypsin Affects U0126-Induced Cytotoxicity in Colon Cancer Cell Line (HCT116)

    No full text
    Alpha-1-antitrypsin (AAT), an acute phase protein, is the principal circulatory anti-protease. This multifunctional protein is encoded by the SERPINA1 gene. Although AAT was recognised as a potential tumour marker, its role in cancer biology remains unknown. Given that it has been demonstrated that AAT has an anti-apoptotic property against non-malignant cells, we aimed to investigate whether AAT affects apoptosis in a colon cancer cell line (HCT116). The presence of AAT in the HCT116 cell culture antagonized cytotoxicity of blockers of MEK1/2, PI3K/Akt pathways as well as NF-kappa B. The dominantly recovered cell viability was observed in the co-treatment with MEK1/2 inhibitor U0126. In addition, it was revealed that AAT almost completely abolished U0126-induced apoptosis through maintenance of the autophagy process. Our study revealed for the first time that the observed cyto-protection triggered by AAT was accompanied by sustained autophagy which opposed apoptosis. These results may contribute to understanding of the role of AAT in cancer development and evaluation of efficacy of cancer therapy

    Phase transformation and microstructure study of the as-cast Cu-rich Cu-Al-Mn ternary alloys

    No full text
    Four Cu-rich alloys from the ternary Cu-Al-Mn system were prepared in the electric-arc furnace and casted in cylindrical moulds with dimensions: f=8 mm and length 12 mm. Microstructural investigations of the prepared samples were performed by using optical microscopy (OM) and scanning electron microscopy, equipped by energy dispersive spectroscopy (SEM-EDS). Assignation of crystalline phases was confirmed by XRD analysis. Phase transition temperatures were determined using simultaneous thermal analyzer STA DSC/TG. Phase equilibria calculation of the ternary Cu-Al-Mn system was performed using optimized thermodynamic parameters from literature. Microstructure and phase transitions of the prepared as-cast alloys were investigated and experimental results were compared with the results of thermodynamic calculations

    Multiple antimelanoma potential of dry olive leaf extract

    No full text
    Various constituents of the olive tree (Olea europaea) have been traditionally used in the treatment of infection, inflammation, prevention of chronic diseases, cardiovascular disorders and cancer. The anticancer potential of dry olive leaf extract (DOLE) represents the net effect of multilevel interactions between different biologically active compounds from the extract, cancer cells and conventional therapy. In this context, it was of primary interest to evaluate the influence of DOLE on progression of the highly malignant, immuno-and chemoresistant type of skin cancer-melanoma. DOLE significantly inhibited proliferation and subsequently restricted clonogenicity of the B16 mouse melanoma cell line in vitro. Moreover, late phase tumor treatment with DOLE significantly reduced tumor volume in a syngeneic strain of mice. DOLE-treated B16 cells were blocked in the G(0)/G(1) phase of the cell cycle, underwent early apoptosis and died by late necrosis. At the molecular level, the dying process started as caspase dependent, but finalized as caspase independent. In concordance, overexpression of antiapoptotic members of the Bcl-2 family, Bcl-2 and Bcl-XL, and diminished expression of their natural antagonists, Bim and p53, were observed. Despite molecular suppression of the proapoptotic process, DOLE successfully promoted cell death mainly through disruption of cell membrane integrity and late caspase-independent fragmentation of genetic material. Taken together, the results of this study indicate that DOLE possesses strong antimelanoma potential. When DOLE was applied in combination with different chemotherapeutics, various outcomes, including synergy and antagonism, were observed. This requires caution in the use of the extract as a supplementary antitumor therapeutic.Serbian Ministry of Science [143029

    Multiple antimelanoma potential of dry olive leaf extract

    No full text
    Various constituents of the olive tree (Olea europaea) have been traditionally used in the treatment of infection, inflammation, prevention of chronic diseases, cardiovascular disorders and cancer. The anticancer potential of dry olive leaf extract (DOLE) represents the net effect of multilevel interactions between different biologically active compounds from the extract, cancer cells and conventional therapy. In this context, it was of primary interest to evaluate the influence of DOLE on progression of the highly malignant, immuno-and chemoresistant type of skin cancer-melanoma. DOLE significantly inhibited proliferation and subsequently restricted clonogenicity of the B16 mouse melanoma cell line in vitro. Moreover, late phase tumor treatment with DOLE significantly reduced tumor volume in a syngeneic strain of mice. DOLE-treated B16 cells were blocked in the G(0)/G(1) phase of the cell cycle, underwent early apoptosis and died by late necrosis. At the molecular level, the dying process started as caspase dependent, but finalized as caspase independent. In concordance, overexpression of antiapoptotic members of the Bcl-2 family, Bcl-2 and Bcl-XL, and diminished expression of their natural antagonists, Bim and p53, were observed. Despite molecular suppression of the proapoptotic process, DOLE successfully promoted cell death mainly through disruption of cell membrane integrity and late caspase-independent fragmentation of genetic material. Taken together, the results of this study indicate that DOLE possesses strong antimelanoma potential. When DOLE was applied in combination with different chemotherapeutics, various outcomes, including synergy and antagonism, were observed. This requires caution in the use of the extract as a supplementary antitumor therapeutic.Serbian Ministry of Science [143029

    Anticancer properties of ganoderma lucidum methanol extracts in vitro and in vivo

    No full text
    Anticancer activities of various extracts of the medicinal mushroom, Ganoderma lucidum, have been widely demonstrated and are mainly associated with the presence of different bioactive polysaccharides and triterpenoids. We have evaluated and compared in vitro and in vivo the antitumor effects of two preparations from Ganoderma lucidum: a methanol extract containing total terpenoids (GLme) and a purified methanol extract containing mainly acidic terpenoids (GLpme). Both extracts inhibited tumor growth of B16 mouse melanoma cells inoculated subcutaneously into syngeneic C57BL/6 mice and reduced viability of B16 cells in vitro, whereby GLme exhibited stronger effect. Furthermore, anticancer activity of GLme was demonstrated for the first time against two other rodent tumor cell lines, L929-mouse fibrosarcoma and C6-rat astrocytoma. The mechanism of antitumor activity of GLme comprised inhibition of cell proliferation and induction of caspase-dependent apoptotic cell death mediated by upregulated p53 and inhibited Bcl-2 expression. Moreover, the antitumor effect of the GLme was associated with intensified production of reactive oxygen species, whereas their neutralization by the antioxidant, N-acetyl cysteine, resulted in partial recovery of cell viability. Thus, our results suggest that GLme might be a good candidate for treatment of diverse forms of cancers

    Critical role of macrophage migration inhibitory factor activity in experimental autoimmune diabetes

    Get PDF
    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays a pivotal role in several immunoinflammatory and autoimmune diseases. In this study we examined the role of MIF in the development of immunoinflammatory diabetes induced in susceptible strains of mice by multiple low doses of streptozotocin. We found that MIF protein was significantly elevated in islet cells during the development of diabetes, and that targeting MIF activity with either neutralizing antibody or the pharmacological inhibitor (S, R)- 3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester, markedly reduced clinical and histopathological features of the disease, such as hyperglycemia and insulitis. Lymphocytes from mice treated with the MIF inhibitors exhibited reduction of both islet antigen-specific proliferative responses and adhesive cell-cell interactions. Neutralization of MIF also down-regulated the ex vivo secretion of the proinflammatory mediators, TNF-alpha, interferon-gamma, and nitric oxide, while augmenting that of the antiinflammatory cytokine, IL-10. This study provides the first in vivo evidence for a critical role for MIF in the immune-mediated beta-cell destruction in an animal model of human type 1 diabetes mellitus and identifies a new therapeutic strategy for the prevention and treatment of this disease in humans that is based on the selective inhibition of MIF activity.nul
    • ā€¦
    corecore