12 research outputs found

    A case of feline gastrointestinal eosinophilic sclerosing fibroplasia associated with phycomycetes

    Get PDF
    Feline gastrointestinal eosinophilic sclerosing fibroplasia (FGESF) is a recently described inflammatory condition of domestic cats with unknown aetiology. A proportion of cases of FGESF are associated with bacteria, but antibiotic treatment is ineffective. It has been hypothesized that genetically predisposed cats may develop FGESF in response to the introduction of bacteria or other antigens into the intestinal wall. A 9- month-old male Persian cat presented with a history of marked acute haematemesis. A mass (10 cm diameter) was detected within the pylorus and proximal duodenum and this was not surgically accessible. On necropsy examination the duodenal wall was seen to be markedly thickened with extensive mucosal ulceration. Microscopically, there were haphazardly oriented trabecular bands of dense eosinophilic collagen,separated by wide, clear areas containing variable numbers of fibroblasts, eosinophils, mast cells, neutrophils,macrophages, lymphocytes and plasma cells. Numerous pleomorphic, non-parallel walled, sparsely septate hyphae, characteristic of phycomycetes, were present within the collagen matrix. Colonies of gram-positive and gram-negative rods were also present within the lesion. This is the first description of FGESF with intralesional fungi

    Brucella ceti infection in dolphins from the Western Mediterranean sea

    Get PDF
    Background: Brucella ceti infections have been increasingly reported in cetaceans. Brucellosis in these animals is associated with meningoencephalitis, abortion, discospondylitis’, subcutaneous abscesses, endometritis and other pathological conditions B. ceti infections have been frequently described in dolphins from both, the Atlantic and Pacific Oceans. In the Mediterranean Sea, only two reports have been made: one from the Italian Tyrrhenian Sea and the other from the Adriatic Sea. Results: We describe the clinical and pathological features of three cases of B. ceti infections in three dolphins stranded in the Mediterranean Catalonian coast. One striped dolphin had neurobrucellosis, showing lethargy, incoordination and lateral swimming due to meningoencephalitis, A B. ceti infected bottlenose dolphin had discospondylitis, and another striped dolphin did not show clinical signs or lesions related to Brucella infection. A detailed characterization of the three B. ceti isolates was performed by bacteriological, molecular, protein and fatty acid analyses. Conclusions: All the B. ceti strains originating from Mediterranean dolphins cluster together in a distinct phylogenetic clade, close to that formed by B. ceti isolates from dolphins inhabiting the Atlantic Ocean. Our study confirms the severity of pathological signs in stranded dolphins and the relevance of B. ceti as a pathogen in the Mediterranean Sea

    Six-year follow-up of slaughterhouse surveillance (2008-2013): the Catalan Slaughterhouse Support Network (SESC)

    Get PDF
    Meat inspection has the ultimate objective of declaring the meat and offal obtained from carcasses of slaughtered animals fit or unfit for human consumption. This safeguards the health of consumers by ensuring that the food coming from these establishments poses no risk to public health. Concomitantly, it contributes to animal disease surveillance. The Catalan Public Health Protection Agency (Generalitat de Catalunya) identified the need to provide its meat inspectors with a support structure to improve diagnostic capacity: the Slaughterhouse Support Network (SESC). The main goal of the SESC was to offer continuing education to meat inspectors to improve the diagnostic capacity for lesions observed in slaughterhouses. With this aim, a web-based application was designed that allowed meat inspectors to submit their inquiries, images of the lesions, and samples for laboratory analysis. This commentary reviews the cases from the first 6 years of SESC operation (2008–2013). The program not only provides continuing education to inspectors but also contributes to the collection of useful information on animal health and welfare. Therefore, SESC complements animal disease surveillance programs, such as those for tuberculosis, bovine cysticercosis, and porcine trichinellosis, and is a powerful tool for early detection of emerging animal diseases and zoonoses

    Brucella ceti infection in dolphins from the Western Mediterranean sea

    No full text
    Background: Brucella ceti infections have been increasingly reported in cetaceans. Brucellosis in these animals is associated with meningoencephalitis, abortion, discospondylitis', subcutaneous abscesses, endometritis and other pathological conditions B. ceti infections have been frequently described in dolphins from both, the Atlantic and Pacific Oceans. In the Mediterranean Sea, only two reports have been made: one from the Italian Tyrrhenian Sea and the other from the Adriatic Sea.Results: We describe the clinical and pathological features of three cases of B. ceti infections in three dolphins stranded in the Mediterranean Catalonian coast. One striped dolphin had neurobrucellosis, showing lethargy, incoordination and lateral swimming due to meningoencephalitis, A B. ceti infected bottlenose dolphin had discospondylitis, and another striped dolphin did not show clinical signs or lesions related to Brucella infection. A detailed characterization of the three B. ceti isolates was performed by bacteriological, molecular, protein and fatty acid analyses.Conclusions: All the B. ceti strains originating from Mediterranean dolphins cluster together in a distinct phylogenetic clade, close to that formed by B. ceti isolates from dolphins inhabiting the Atlantic Ocean. Our study confirms the severity of pathological signs in stranded dolphins and the relevance of B. ceti as a pathogen in the Mediterranean Sea.Antecedentes: Las infecciones por Brucella ceti se han notificado cada vez más en los cetáceos. La brucelosis en estos animales se asocia con meningoencefalitis, aborto, discopondilitis, abscesos subcutáneos, endometritis y otras condiciones patológicas. Las infecciones por B. ceti se han descrito con frecuencia en delfines de los océanos Atlántico y Pacífico. En el Mar Mediterráneo, sólo se han hecho dos informes: uno del Mar Tirreno italiano y el otro del Mar Adriático: Describimos las características clínicas y patológicas de tres casos de infecciones de B. ceti en tres delfines varados en la costa mediterránea catalana. Un delfín listado presentaba neurobrucelosis, mostrando letargo, incoordinación y natación lateral debido a la meningoencefalitis, el delfín mular infectado por B. ceti presentaba discopondilitis, y otro delfín listado no mostraba signos clínicos o lesiones relacionadas con la infección por Brucella. Se realizó una caracterización detallada de los tres aislamientos de B. ceti mediante análisis bacteriológicos, moleculares, de proteínas y de ácidos grasos. Conclusiones: Todas las cepas de B. ceti procedentes de delfines del Mediterráneo se agrupan en un clado filogenético distinto, cercano al formado por los aislamientos de B. ceti de los delfines que habitan en el Océano Atlántico. Nuestro estudio confirma la gravedad de los signos patológicos en los delfines varados y la relevancia de B. ceti como patógeno en el Mar Mediterráneo.Universidad Nacional, Costa RicaEscuela de Medicina Veterinari

    Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus)

    No full text
    White-nose syndrome (WNS) caused by the fungus, Pseudogymnoascus destructans (Pd) has killed millions of North American hibernating bats. Currently, methods to prevent the disease are limited. We conducted two trials to assess potential WNS vaccine candidates in wild-caught Myotis lucifugus. In a pilot study, we immunized bats with one of four vaccine treatments or phosphate-buffered saline (PBS) as a control and challenged them with Pd upon transfer into hibernation chambers. Bats in one vaccine-treated group, that received raccoon poxviruses (RCN) expressing Pd calnexin (CAL) and serine protease (SP), developed WNS at a lower rate (1/10) than other treatments combined (14/23), although samples sizes were small. The results of a second similar trial provided additional support for this observation. Bats vaccinated orally or by injection with RCN-CAL and RCN-SP survived Pd challenge at a significantly higher rate (P = 0.01) than controls. Using RT-PCR and flow cytometry, combined with fluorescent in situ hybridization, we determined that expression of IFN-γ transcripts and the number of CD4 + T-helper cells transcribing this gene were elevated (P \u3c 0.10) in stimulated lymphocytes from surviving vaccinees (n = 15) compared to controls (n = 3). We conclude that vaccination with virally-vectored Pd antigens induced antifungal immunity that could potentially protect bats against WNS
    corecore