170 research outputs found

    CASED: Curriculum Adaptive Sampling for Extreme Data Imbalance

    Full text link
    We introduce CASED, a novel curriculum sampling algorithm that facilitates the optimization of deep learning segmentation or detection models on data sets with extreme class imbalance. We evaluate the CASED learning framework on the task of lung nodule detection in chest CT. In contrast to two-stage solutions, wherein nodule candidates are first proposed by a segmentation model and refined by a second detection stage, CASED improves the training of deep nodule segmentation models (e.g. UNet) to the point where state of the art results are achieved using only a trivial detection stage. CASED improves the optimization of deep segmentation models by allowing them to first learn how to distinguish nodules from their immediate surroundings, while continuously adding a greater proportion of difficult-to-classify global context, until uniformly sampling from the empirical data distribution. Using CASED during training yields a minimalist proposal to the lung nodule detection problem that tops the LUNA16 nodule detection benchmark with an average sensitivity score of 88.35%. Furthermore, we find that models trained using CASED are robust to nodule annotation quality by showing that comparable results can be achieved when only a point and radius for each ground truth nodule are provided during training. Finally, the CASED learning framework makes no assumptions with regard to imaging modality or segmentation target and should generalize to other medical imaging problems where class imbalance is a persistent problem.Comment: 20th International Conference on Medical Image Computing and Computer Assisted Intervention 201

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
    corecore