84 research outputs found

    Blood pressure wave propagation : a multisensor setup for cerebral autoregulation studies

    Get PDF
    Objective. Cerebral autoregulation is critically important to maintain proper brain perfusion and supply the brain with oxygenated blood. Non-invasive measures of blood pressure (BP) are critical in assessing cerebral autoregulation. Wave propagation velocity may be a useful technique to estimate BP but the effect of the location of the sensors on the readings has not been thoroughly examined. In this paper, we were interested in studying whether the propagation velocity of a pressure wave in the direction from the heart to the brain may differ compared with propagation from the heart to the periphery, as well as across different physiological tasks and/or health conditions. Using non-invasive sensors simultaneously placed at different locations of the human body allows for the study of how the propagation velocity of the pressure wave, based on pulse transit time (PTT), varies across different directions. Approach. We present a multi-sensor BP wave propagation measurement setup intended for cerebral autoregulation studies. The presented sensor setup consists of three sensors, one placed on each of the neck, chest and finger, allowing simultaneous measurement of changes in BP propagation velocity towards the brain and to the periphery. We show how commonly tested physiological tasks affect the relative changes of PTT and correlations with BP. Main results. We observed that during maximal blow, valsalva and breath hold breathing tasks, the relative changes of PTT were higher when PTT was measured in the direction from the heart to the brain than from the heart to the peripherals. In contrast, during a deep breathing task, the relative change in PTT from the heart to the brain was lower. In addition, we present a short literature review of the PTT methods used in brain research. Significance. These preliminary data suggest that the physiological task and direction of PTT measurement may affect relative PTT changes. The presented three-sensor setup provides an easy and neuroimaging compatible method for cerebral autoregulation studies by allowing measurement of BP wave propagation velocity towards the brain versus towards the periphery

    The consideration of post-exercise impact on SCAT3 scores in athletes immediately following a head injury

    Get PDF
    Examine effects of high-intensity exercise and physical impacts during rugby match on self-report symptoms in The Sport Concussion Assessment Tool (SCAT3), and its ability to differentiate head-injured players from controls. Methods: Symptoms were assessed immediately following completion of a rugby match (median 60 minutes). Players removed from the match for assessment due to a head hit were classified as head injured. Controls completed match without head hit. Results: 209 players (67 female; 33 ± 13 years) participated with 80 experiencing a head injury. Symptom severity was significantly greater in head injured (26.2 ± 17.6) compared with controls (8.9 ± 11.5, P 16 symptom severity, misclassifying them as suspected concussion. There were no significant sex differences. Factor analysis produced four symptom clusters of which Headache was most discriminatory between the head injured (median = 1.7) and controls (median = 0.0). Conclusion: These findings demonstrate that exercise and contact during a game affect symptom assessment, increasing the likelihood of misclassifying players with suspected concussion. Factor characterization of symptoms associated with head injury using an exercised comparison group provides more useful discrimination. These results highlight the necessity for objective measures to diagnose concussions outside of symptom self-report

    What have we learned from 15  years of research on cross-situational word learning? A focused review

    Get PDF
    In 2007 and 2008, Yu and Smith published their seminal studies on cross-situational word learning (CSWL) in adults and infants, showing that word-object-mappings can be acquired from distributed statistics despite in-the-moment uncertainty. Since then, the CSWL paradigm has been used extensively to better understand (statistical) word learning in different language learners and under different learning conditions. The goal of this review is to provide an entry-level overview of findings and themes that have emerged in 15 years of research on CSWL across three topic areas (mechanisms of CSWL, CSWL across different learner and task characteristics) and to highlight the questions that remain to be answered

    Adaptation of the Cerebrocortical Circulation to Carotid Artery Occlusion Involves Blood Flow Redistribution between Cortical Regions and is Independent of eNOS

    Get PDF
    Cerebral circulation is secured by feed-forward and feed-back control pathways to maintain and eventually reestablish the optimal oxygen and nutrient supply of neurons in case of disturbances of the cardiovascular system. Using the high temporal and spatial resolution of laser-speckle imaging we aimed to analyze the pattern of cerebrocortical blood flow (CoBF) changes after unilateral (left) carotid artery occlusion (CAO) in anesthetized mice in order to evaluate the contribution of macrovascular (Willis circle) vs. pial collateral vessels as well as that of endothelial nitric oxide synthase (eNOS) to the cerebrovascular adaptation to CAO. In wild-type mice CoBF reduction in the left temporal cortex started immediately after CAO, reaching its maximum (-26%) at 5-10 s. Thereafter, CoBF recovered close to the pre-occlusion level within 30 s indicating the activation of feed-back pathway(s). Interestingly, the frontoparietal cerebrocortical regions also showed CoBF reduction in the left (-17-19%) but not in the right hemisphere, although these brain areas receive their blood supply from the common azygos anterior cerebral artery in mice. In eNOS-deficient animals the acute CoBF reduction after CAO was unaltered, and the recovery was even accelerated as compared to controls. These results indicate that (i) the Willis circle alone is not sufficient to provide an immediate compensation for the loss of one carotid artery, (ii) pial collaterals attenuate the ischemia of the temporal cortex ipsilateral to CAO at the expense of the blood supply of the frontoparietal region, and (iii) eNOS, surprisingly, does not play an important role in this CoBF redistribution

    The role of response modalities in cognitive task representations

    Get PDF
    The execution of a task necessitates the use of a specific response modality. We examined the role of different response modalities by using a task-switching paradigm. In Experiment 1, subjects switched between two numerical judgments, whereas response modality (vocal vs. manual vs. foot responses) was manipulated between groups. We found judgment-shift costs in each group, that is irrespective of the response modality. In Experiment 2, subjects switched between response modalities (vocal vs. manual, vocal vs. foot, or manual vs. foot). We observed response-modality shift costs that were comparable in all groups. In sum, the experiments suggest that the response modality (combination) does not affect switching per se. Yet, modality-shift costs occur when subjects switch between response modalities. Thus, we suppose that modality-shift costs are not due to a purely motor-related mechanisms but rather emerge from a general switching process. Consequently, the response modality has to be considered as a cognitive component in models of task switching

    Hypersensitivity to Thromboxane Receptor Mediated Cerebral Vasomotion and CBF Oscillations during Acute NO-Deficiency in Rats

    Get PDF
    ), NO-deficiency is often associated with activation of thromboxane receptors (TP). In the present study we hypothesized that in the absence of NO, overactivation of the TP-receptor mediated cerebrovascular signaling pathway contributes to the development of vasomotion and CBF oscillations. synthesis by ozagrel (10 mg/kg iv.) attenuated it. In isolated MCAs U-46619 in a concentration of 100 nM, which induced weak and stable contraction under physiological conditions, evoked sustained vasomotion in the absence of NO, which effect could be completely reversed by inhibition of Rho-kinase by 10 µM Y-27632.These results suggest that hypersensitivity of the TP-receptor – Rho-kinase signaling pathway contributes to the development of low frequency cerebral vasomotion which may propagate to vasospasm in pathophysiological states associated with NO-deficiency
    • …
    corecore