13,751 research outputs found

    Electric field dependence of spin coherence in (001) GaAs/AlGaAs quantum wells

    Full text link
    Conduction electron spin lifetimes (T1T_1) and spin coherence times (T2T_2) are strongly modified in semiconductor quantum wells by electric fields. Quantitative calculations in GaAs/AlGaAs quantum wells at room temperature show roughly a factor of four enhancement in the spin lifetimes at optimal values of the electric fields. The much smaller enhancement compared to previous calculations is due to overestimates of the zero-field spin lifetime and the importance of nonlinear effects.Comment: 5 pages, 3 figure

    The relation between gas density and velocity power spectra in galaxy clusters: high-resolution hydrodynamic simulations and the role of conduction

    Full text link
    Exploring the ICM power spectrum can help us to probe the physics of galaxy clusters. Using high-resolution 3D plasma simulations, we study the statistics of the velocity field and its relation with the thermodynamic perturbations. The normalization of the ICM spectrum (density, entropy, or pressure) is linearly tied to the level of large-scale motions, which excite both gravity and sound waves due to stratification. For low 3D Mach number M~0.25, gravity waves mainly drive entropy perturbations, traced by preferentially tangential turbulence. For M>0.5, sound waves start to significantly contribute, passing the leading role to compressive pressure fluctuations, associated with isotropic (or slightly radial) turbulence. Density and temperature fluctuations are then characterized by the dominant process: isobaric (low M), adiabatic (high M), or isothermal (strong conduction). Most clusters reside in the intermediate regime, showing a mixture of gravity and sound waves, hence drifting towards isotropic velocities. Remarkably, regardless of the regime, the variance of density perturbations is comparable to the 1D Mach number. This linear relation allows to easily convert between gas motions and ICM perturbations, which can be exploited by Chandra, XMM data and by the forthcoming Astro-H. At intermediate and small scales (10-100 kpc), the turbulent velocities develop a Kolmogorov cascade. The thermodynamic perturbations act as effective tracers of the velocity field, broadly consistent with the Kolmogorov-Obukhov-Corrsin advection theory. Thermal conduction acts to damp the gas fluctuations, washing out the filamentary structures and steepening the spectrum, while leaving unaltered the velocity cascade. The ratio of the velocity and density spectrum thus inverts the downtrend shown by the non-diffusive models, allowing to probe the presence of significant conductivity in the ICM.Comment: Accepted by A&A; 15 pages, 10 figures; added insights and references - thank you for the positive feedbac

    Compensating impurity effect on epitaxial regrowth rate of amorphized Si

    Get PDF
    The epitaxial regrowth of ion-implanted amorphous layers on Si with partly compensated doping profiles of 11B, 75As, and 31P was studied. Single implants of these impurities are found to increase the regrowth rate at 475 and 500°C. The compensated layers with equal concentrations of 11B and 31P or 11B and 75As show a strong decrease of the regrowth whereas for the layers with overlapping 75As and 31P profiles no compensation has been found

    Employment of relationship marketing strategies for enhancing customer satisfaction in Malaysian private hospitals

    Get PDF
    Marketers, in academia and business practice, are continually searching for new and more effective methods. One such approach that has gained popularity in Malaysian private hospitals, in recent years, is relationship marketing. This study examined the extent to which relationship marketing strategies are used to improve customer satisfaction and maintain customer loyalty. The study results indicate that a good relationship marketing strategy can be crucial for private hospitals to gain a competitive edge, especially with the rapid development of private hospitals in the urban centres

    Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes

    Get PDF
    The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor

    Non-magnetic semiconductor spin transistor

    Full text link
    We propose a spin transistor using only non-magnetic materials that exploits the characteristics of bulk inversion asymmetry (BIA) in (110) symmetric quantum wells. We show that extremely large spin splittings due to BIA are possible in (110) InAs/GaSb/AlSb heterostructures, which together with the enhanced spin decay times in (110) quantum wells demonstrates the potential for exploitation of BIA effects in semiconductor spintronics devices. Spin injection and detection is achieved using spin-dependent resonant interband tunneling and spin transistor action is realized through control of the electron spin lifetime in an InAs lateral transport channel using an applied electric field (Rashba effect). This device may also be used as a spin valve, or a magnetic field sensor. The electronic structure and spin relaxation times for the spin transistor proposed here are calculated using a nonperturbative 14-band k.p nanostructure model.Comment: Accepted for publication in Applied Physics Letter

    Cryogenic microstripline-on-Kapton microwave interconnects

    Get PDF
    Simple broadband microwave interconnects are needed for increasing the size of focal plane heterodyne radiometer arrays. We have measured loss and cross-talk for arrays of microstrip transmission lines in flex circuit technology at 297 and 77 K, finding good performance to at least 20 GHz. The dielectric constant of Kapton substrates changes very little from 297 to 77 K, and the electrical loss drops. The small cross-sectional area of metal in a printed circuit structure yields overall thermal conductivities similar to stainless steel coaxial cable. Operationally, the main performance tradeoffs are between crosstalk and thermal conductivity. We tested a patterned ground plane to reduce heat flux.Comment: 3 pages, 3 figures, submitted to The Review of Scientific Instrument

    The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations

    Full text link
    We address the problem of evaluating the power spectrum of the velocity field of the ICM using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρk/ρ)2=η12(V1,k/cs)2(\delta\rho_k/\rho)^2 = \eta_1^2 (V_{1,k}/c_s)^2, where δρk/ρ\delta\rho_k/\rho is the spectral amplitude of the density perturbations at wave number kk, V1,k2=Vk2/3V_{1,k}^2=V_k^2/3 is the mean square component of the velocity field, csc_s is the sound speed, and η1\eta_1 is a dimensionless constant of order unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η11±0.3\eta_1\approx 1 \pm 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters, across a wide range of scales.Comment: 6 pages, 3 figures, submitted to ApJ Letter
    corecore