110 research outputs found

    HI Imaging of LGS 3 and an Apparently Interacting High-Velocity Cloud

    Full text link
    We present a 93' by 93' map of the area near the Local Group dwarf galaxy LGS 3, centered on an HI cloud 30' away from the galaxy. Previous authors associated this cloud with LGS 3 but relied on observations made with a 36' beam. Our high-resolution (3.4'), wide-field Arecibo observations of the region reveal that the HI cloud is distinct from the galaxy and suggest an interaction between the two. We point out faint emission features in the map that may be gas that has been tidally removed from the HI cloud by LGS 3. We also derive the rotation curve of the cloud and find that it is in solid-body rotation out to a radius of 10', beyond which the rotation velocity begins to decline. Assuming a spherical geometry for the cloud, the implied mass is 2.8 x 10^7 (d/Mpc) M_{Sun}, where d is the distance in Mpc. The observed HI mass is 5.5 x 10^6 (d/Mpc)^2 M_{Sun}, implying that the cloud is dark-matter dominated unless its distance is at least 1.9 Mpc. We propose that the cloud is a high-velocity cloud that is undergoing a tidal interaction with LGS 3 and therefore is located roughly 700 kpc away from the Milky Way. The cloud then contains a total mass of ~2.0 x 10^7 M_{Sun}, 82% of which consists of dark matter.Comment: 5 pages, 2 color figures. Accepted for publication in ApJ Letter

    High Velocity Cloud Complex H: A Satellite of the Milky Way in a Retrograde Orbit?

    Full text link
    Observations with the Green Bank Telescope of 21cm HI emission from the high-velocity cloud Complex H suggest that it is interacting with the Milky Way. A model in which the cloud is a satellite of the Galaxy in an inclined, retrograde circular orbit reproduces both the cloud's average velocity and its velocity gradient with latitude. The model places Complex H at approximately 33 kpc from the Galactic Center on a retrograde orbit inclined about 45 degrees to the Galactic plane. At this location it has an HI mass > 6 10^6 Msun and dimensions of at least 10 by 5 kpc. Some of the diffuse HI associated with the cloud has apparently been decelerated by interaction with Galactic gas. Complex H has similarities to the dwarf irregular galaxy Leo A and to some compact high-velocity clouds, and has an internal structure nearly identical to parts of the Magellanic Stream, with a pressure P/k about 100 cm^{-3} K.Comment: 12 pages includes 4 figures. To be published in Astrophysical Journal Letters, 1 July 200

    The Arecibo Dual-Beam Survey: Arecibo and VLA Observations

    Full text link
    The Arecibo Dual-Beam Survey is a "blind" 21 cm search for galaxies covering \~430 deg^2 of sky. We present the data from the detection survey as well as from the follow-up observations to confirm detections and improve positions and flux measurements. We find 265 galaxies, many of which are extremely low surface brightness. Some of these previously uncataloged galaxies lie within the zone of avoidance where they are obscured by the gas and dust in our Galaxy. 81 of these sources are not previously cataloged optically and there are 11 galaxies that have no associated optical counterpart or are only tentatively associated with faint wisps of nebulosity on the Digitized Sky Survey images. We discuss the properties of the survey and in particular we make direct determinations of the completeness and reliability of the sample. The behavior of the completeness and its dependencies is essential for determining the HI mass function. We leave the discussion of the mass function for a later paper, but do note that we find many low surface brightness galaxies and 7 sources with M_HI < 10^8 Msolar.Comment: 23 pages, 20 figures, accepted ApJS. For tables 2 and 3 only the first page has been included. ASCII tables are provided separatel

    A Survey of O VI, C III, and H I in Highly Ionized High-Velocity Clouds

    Full text link
    (ABRIDGED) We present a Far-Ultraviolet Spectroscopic Explorer survey of highly ionized high-velocity clouds (HVCs) in 66 extragalactic sight lines. We find a total of 63 high-velocity O VI absorbers, 16 with 21 cm-emitting H I counterparts and 47 ``highly ionized'' absorbers without 21 cm emission. 11 of these high-velocity O VI absorbers are positive-velocity wings (broad O VI features extending asymmetrically to velocities of up to 300 km/s). The highly ionized HVC population is characterized by =38+/-10 km/s and <log N_a(O VI)>=13.83+/-0.36. We find that 81% (30/37) of high-velocity O VI absorbers have clear accompanying C III absorption, and 76% (29/38) have accompanying H I absorption in the Lyman series. The lower average width of the high-velocity H I absorbers implies the H I lines arise in a separate, lower temperature phase than the O VI. We find that the shape of the wing profiles is well reproduced by a radiatively cooling, vertical outflow. However, the outflow has to be patchy and out of ionization equilibrium. An alternative model, consistent with the observations, is one where the highly ionized HVCs represent the low N(H I) tail of the HVC population, with the O VI formed at the interfaces around the embedded H I cores. Though we cannot rule out a Local Group explanation, we favor a Galactic origin. This is based on the recent evidence that both H I HVCs and the million-degree gas detected in X-ray absorption are Galactic phenomena. Since the highly ionized HVCs appear to trace the interface between these two Galactic phases, it follows that highly ionized HVCs are Galactic themselves. However, the non-detection of high-velocity O VI in halo star spectra implies that any Galactic high-velocity O VI exists at z-distances beyond a few kpc.Comment: 36 pages, 14 figures (3 in color), accepted to ApJS. Some figures downgraded to limit file siz

    Gas Rich Dwarf Spheroidals

    Get PDF
    We present evidence that nearly half of the dwarf spheroidal galaxies (dSph and dSph/dIrr) in the Local Group are associated with large reservoirs of atomic gas, in some cases larger than the stellar mass. The gas is sometimes found at large distance (~10 kpc) from the center of a galaxy and is not necessarily centered on it. Similarly large quantities of ionized gas could be hidden in these systems as well. The properties of some of the gas reservoirs are similar to the median properties of the High-Velocity Clouds (HVCs); two of the HI reservoirs are catalogued HVCs. The association of the HI with the dwarf spheroidals might thus provide a link between the HVCs and stars. We show that the HI content of the Local Group dSphs and dIrrs exhibits a sharp decline if the galaxy is within 250 kpc of either the Milky Way or M31. This can be explained if both galaxies have a sufficiently massive x-ray emitting halo that produces ram-pressure stripping if a dwarf ventures too close to either giant spiral. We also investigate tidal stripping of the dwarf galaxies and find that although it may play a role, it cannot explain the apparent total absence of neutral gas in most dSph galaxies at distances less than 250 kpc. For the derived mean density of the hot gas, n_0 = 2.5e-5 cm^-2, ram-pressure stripping is found to be more than an order of magnitude more effective in removing the gas from the dSph galaxies. The hot halo, with an inferred mass of 1e10 solar masses, may represent a reservoir of ~1000 destroyed dwarf systems, either HVCs or true dwarf galaxies similar to those we observe now.Comment: AASTex preprint style, 27 pages including 12 figures. Submitted to ApJ. See also http://astro.berkeley.edu/~robisha

    On the origin of anomalous velocity clouds in the Milky Way

    Full text link
    We report that neutral hydrogen (HI) gas clouds, resembling High Velocity Clouds (HVCs) observed in the Milky Way (MW), appear in MW-sized disk galaxies formed in high-resolution Lambda Cold Dark Matter (LCDM) cosmological simulations which include gas-dynamics, radiative cooling, star formation, supernova feedback, and metal enrichment. Two such disk galaxies are analyzed, and HI column density and velocity distributions in all-sky Aitoff projections are constructed. The simulations demonstrate that LCDM is able to create galaxies with sufficient numbers of anomalous velocity gas clouds consistent with the HVCs observed within the MW, and that they are found within a galactocentric radius of 150 kpc. We also find that one of the galaxies has a polar gas ring, with radius 30 kpc, which appears as a large structure of HVCs in the Aitoff projection. Such large structures may share an origin similar to extended HVCs observed in the MW, such as Complex C.Comment: Accepted by ApJL, 08 Jun 2006. 5 pages, 5 figures, 1 table. LaTeX (emulateapj.cls). File with high resolution images available at http://astronomy.swin.edu.au/~tconnors/publications/ . References added; discussion added to, but conclusions unchange

    Mixing of magmatic-hydrothermal and metamorphic fluids and the origin of peribatholitic Sn vein-type deposits in Rwanda

    Get PDF
    The fluid sources of granite-related Sn-quartz vein deposits are commonly obscured by fluid mixing or fluid-rock interactions. As a result, fluid inclusions, minerals and isotopes in these veins indicate an intermediate composition between magmatic and metamorphic, but the degree of mixing between these endmembers is currently unquantified. This study presents a novel quantitative approach to assess the degree of mixing between magmatic-hydrothermal and external metamorphic fluids in the formation of peribatholitic Sn-quartz veins. In particular, fluid mixing in the Sn-mineralized Rwamagana-Musha-Ntunga pegmatite-quartz vein field in East Rwanda has been evaluated by the following four methods: quartz stable isotopes, muscovite geochemistry, fluid inclusion microthermometry and LA-ICP-MS, and geochemical modelling. The quartz stable isotope data (δ18O: +13.1 to +15.8 ‰ V-SMOW; δD: −27.6 to –59.7 ‰ V-SMOW) cannot uniquely differentiate between a metamorphic fluid origin or an initial magmatic hydrothermal fluid origin with subsequent metamorphic fluid mixing or host-rock interaction. However, granitophile element concentrations in magmatic muscovite from pegmatites and hydrothermal muscovite from associated Sn-quartz veins are equally high, indicating a close genetic link (Rb: 530 – 8740 ppm, Li: 110 – 1990 ppm, Sn: 87 – 810 ppm, Cs: 62 – 420 ppm). Primary H2O-CO2-N2-NaCl medium saline magmatic fluid inclusions in quartz of pegmatites (∼12.7 wt% NaCleq) and H2O-CO2-(N2)-NaCl low saline fluid inclusions in barren metamorphic quartz veins (∼4.9 wt% NaCleq) were analyzed by LA-ICP-MS. These results show an enrichment in Li, Rb, Sn and Cs for the magmatic fluid, while the metamorphic fluid is characterized by low granitophile element concentrations and high Sr and Ba contents. The expected Rb-Cs and Rb-Sn signature of the Sn-quartz vein muscovite was modelled using the measured fluid endmember compositions, confirming mixing between magmatic and metamorphic fluids in the formation of the veins. The quantification suggests that the hydrothermal Sn-quartz vein fluid contains 5 – 80 % of an external metamorphic fluid component
    • …
    corecore