388 research outputs found

    On Micromechanical Parameter Identification With Integrated DIC and the Role of Accuracy in Kinematic Boundary Conditions

    Get PDF
    Integrated Digital Image Correlation (IDIC) is nowadays a well established full-field experimental procedure for reliable and accurate identification of material parameters. It is based on the correlation of a series of images captured during a mechanical experiment, that are matched by displacement fields derived from an underlying mechanical model. In recent studies, it has been shown that when the applied boundary conditions lie outside the employed field of view, IDIC suffers from inaccuracies. A typical example is a micromechanical parameter identification inside a Microstructural Volume Element (MVE), whereby images are usually obtained by electron microscopy or other microscopy techniques but the loads are applied at a much larger scale. For any IDIC model, MVE boundary conditions still need to be specified, and any deviation or fluctuation in these boundary conditions may significantly influence the quality of identification. Prescribing proper boundary conditions is generally a challenging task, because the MVE has no free boundary, and the boundary displacements are typically highly heterogeneous due to the underlying microstructure. The aim of this paper is therefore first to quantify the effects of errors in the prescribed boundary conditions on the accuracy of the identification in a systematic way. To this end, three kinds of mechanical tests, each for various levels of material contrast ratios and levels of image noise, are carried out by means of virtual experiments. For simplicity, an elastic compressible Neo-Hookean constitutive model under plane strain assumption is adopted. It is shown that a high level of detail is required in the applied boundary conditions. This motivates an improved boundary condition application approach, which considers constitutive material parameters as well as kinematic variables at the boundary of the entire MVE as degrees of freedom in...Comment: 37 pages, 25 figures, 2 tables, 2 algorithm

    Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Full text link
    The exciting field of stretchable electronics (SE) promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS)-type) process recipes using bulk integrated circuit (IC) microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R) post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic) stretch beyond 3000%, with 10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.Comment: 13 pages, 5 figure, journal publicatio

    Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations

    Get PDF
    This study uses a geographically-explicit cost optimization model to analyze the impact of and interrelation between four cost reduction strategies for biofuel production: economies of scale, intermodal transport, integration with existing industries, and distributed supply chain configurations (i.e. supply chains with an intermediate pre-treatment step to reduce biomass transport cost). The model assessed biofuel production levels ranging from 1 to 150 PJ a−1 in the context of the existing Swedish forest industry. Biofuel was produced from forestry biomass using hydrothermal liquefaction and hydroprocessing. Simultaneous implementation of all cost reduction strategies yielded minimum biofuel production costs of 18.1–18.2 € GJ−1 at biofuel production levels between 10 and 75 PJ a−1. Limiting the economies of scale was shown to cause the largest cost increase (+0–12%, increasing with biofuel production level), followed by disabling integration benefits (+1–10%, decreasing with biofuel production level) and allowing unimodal truck transport only (+0–6%, increasing with biofuel production level). Distributed supply chain configurations were introduced once biomass supply became increasingly dispersed, but did not provide a significant cost benefit (<1%). Disabling the benefits of integration favors large-scale centralized production, while intermodal transport networks positively affect the benefits of economies of scale. As biofuel production costs still exceeds the price of fossil transport fuels in Sweden after implementation of all cost reduction strategies, policy support and stimulation of further technological learning remains essential to achieve cost parity with fossil fuels for this feedstock/technology combination in this spatiotemporal context

    Effect of restrained versus free drying on hygro-expansion of hardwood and softwood fibers and paper handsheet

    Full text link
    Earlier works in literature on the hygro-expansion of paper state that the larger hygro-expansivity of freely compared to restrained dried handsheets is due to structural differences between the fibers inside the handsheet. To unravel this hypothesis, first, the hygro-expansion of freely and restrained dried, hardwood and softwood handsheets has been characterized. Subsequently, the transient full-field hygro-expansion (longitudinal, transverse, and shear strain) of fibers extracted from these handsheets was measured using global digital height correlation, from which the micro-fibril angle was deduced. The hygro-expansivity of each individual fiber was tested before and after a wetting period, during which the fiber's moisture content is maximized, to analyze if a restrained dried fiber can "transform" into a freely dried fiber. It was found that the longitudinal hygro-expansion of the freely dried fibers is significantly larger than the restrained dried fibers, consistent with the sheet-scale differences. The difference in micro-fibril angle between the freely and restrained dried fibers is a possible explanation for this difference, but merely for the hardwood fibers, which are able to "transform" to freely dried fibers after being soaked in water. In contrast, this "transformation" does not happen in softwood fibers, even after full immersion in water for a day. Various mechanisms have been studied to explain the observations on freely and restrained dried hardwood and softwood, fiber and handsheets including analysis of the fibers' lumen and cross-sectional shape. The presented results and discussion deepens the understanding of the differences between freely and restrained dried handsheets.Comment: 43 pages, 15 figures, 2 table

    Experimental Full-field Analysis of Size Effects in Miniaturized Cellular Elastomeric Metamaterials

    Full text link
    Cellular elastomeric metamaterials are interesting for various applications, e.g. soft robotics, as they may exhibit multiple microstructural pattern transformations, each with its characteristic mechanical behavior. Numerical literature studies revealed that pattern formation is restricted in (thick) boundary layers causing significant mechanical size effects. This paper aims to experimentally validate these findings on miniaturized specimens, relevant for real applications, and to investigate the effect of increased geometrical and material imperfections resulting from specimen miniaturization. To this end, miniaturized cellular metamaterial specimens are manufactured with different scale ratios, subjected to in-situ micro-compression tests combined with digital image correlation yielding full-field kinematics, and compared to complementary numerical simulations. The specimens' global behavior agrees well with the numerical predictions, in terms of pre-buckling stiffness, buckling strain and post-buckling stress. Their local behavior, i.e. pattern transformation and boundary layer formation, is also consistent between experiments and simulations. Comparison of these results with idealized numerical studies from literature reveals the influence of the boundary conditions in real cellular metamaterial applications, e.g. lateral confinement, on the mechanical response in terms of size effects and boundary layer formation.Comment: 20 pages, 6 figures, Materials & Design, 11 May 202

    Ultra-stretchable Interconnects for high-density stretchable electronics

    Get PDF
    The exciting field of stretchable electronics (SE) promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS)-type) process recipes using bulk integrated circuit (IC) microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R) post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic) stretch beyond 3000%, with &lt;0.3% resistance change, and &gt;10 million cycles at 1000% stretch with &lt;1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.</p

    New ultrahigh vacuum setup and advanced diagnostic techniques for studying a-Si:H film growth by radical beams

    Get PDF
    A new ultrahigh vacuum setup is presented which is designed for studying the surface science aspects of a-Si:H film growth using various advanced optical diagnostic techniques. The setup is equipped with plasma and radical sources which produce well-defined radicals beams such that the a-Si:H deposition process can be mimicked. In this paper the initial experiments with respect to deposition of a-Si:H using a hot wire source and etching of a-Si:H by atomic hydrogen are presented. These processes are monitored by real time spectroscopic ellipsometry and the etch yield of Si by atomic hydrogen is quantified to be 0.005±0.002 Si atoms per incoming H atom

    A multi-scale framework to predict damage initiation at martensite/ferrite interface

    Get PDF
    Martensite/ferrite (M/F) interface damage largely controls failure of dual-phase (DP) steels. In order to predict the failure and assess the ductility of DP steels, accurate models for the M/F interfacial zones are needed. Several M/F interface models have been proposed in the literature, which however do not incorporate the underlying microphysics. It has been recently suggested that (lath) martensite substructure boundary sliding dominates the M/F interface damage initiation and therefore should be taken into account. Considering the computationally infeasibility of direct numerical simulations of statistically representative DP steel microstructures, while explicitly resolving the interface microstructures and the sliding activity, a novel multi-scale approach is developed in this work. Two scales are considered: the DP steel mesostructure consisting of multiple lath martensite islands embedded in a ferrite matrix, and the microscopic M/F interfacial zone unit cell resolving the martensite substructure. Based on the emerging microscopic damage initiation pattern, an effective indicator for the M/F interface damage initiation is determined from the interface microstructural unit cell response, along with the effective sliding in this unit cell. Relating these two effective quantities for different interface microstructural configurations leads to an effective mesoscale model relating the interface damage indicator to the sliding activity of the martensite island in terms of the mesoscopic kinematics. This microphysics-based M/F interface damage indicator model, which could not be envisioned a-priori, is fully identified from a set of interfacial unit cell simulations, thus enabling the efficient prediction of interface damage initiation at the mesoscale. The capability of the developed effective model to predict the mesoscopic M/F interface damage initiation is demonstrated on an example of a realistic DP steel mesostructure

    Revisiting the martensite/ferrite interface damage initiation mechanism:The key role of substructure boundary sliding

    Get PDF
    Martensite/ferrite (M/F) interface damage plays a critical role in controlling failure of dual-phase (DP) steels and is commonly understood to originate from the large phase contrast between martensite and ferrite. This however conflicts with a few, recent observations, showing that considerable M/F interface damage initiation is often accompanied by apparent martensite island plasticity and weak M/F strain partitioning. In fact, martensite has a complex hierarchical structure which induces a strongly heterogeneous and orientation-dependent plastic response. Depending on the local stress state, (lath) martensite is presumed to be hard to deform based on common understanding. However, when favourably oriented, substructure boundary sliding can be triggered at a resolved shear stress which is comparable to that of ferrite. Moreover, careful measurements of the M/F interface structure indicate the occurrence of sharp martensite wedges protruding into the ferrite and clear steps in correspondence with lath boundaries, constituting a jagged M/F interfacial morphology that may have a large effect on the M/F interface behaviour. By taking into account the substructure and morphology features, which are usually overlooked in the literature, this contribution re-examines the M/F interface damage initiation mechanism. A systematic study is performed, which accounts for different loading conditions, phase contrasts, residual stresses/strains resulting from the preceding martensitic phase transformation, as well as the possible M/F interfacial morphologies. Crystal plasticity simulations are conducted to include inter-lath retained austenite (RA) films enabling the substructure boundary sliding. The results show that the substructure boundary sliding, which is the most favourable plastic deformation mode of lath martensite, can trigger M/F interface damage and hence control the failure behaviour of DP steels. The present finding may change the way in which M/F interface damage initiation is understood as a critical failure mechanism in DP steels
    • …
    corecore