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a b s t r a c t 

Integrated Digital Image Correlation (IDIC) is nowadays a well established full-field experimental pro- 

cedure for reliable and accurate identification of material parameters. It is based on the correlation of 

a series of images captured during a mechanical experiment, that are matched by displacement fields 

derived from an underlying mechanical model. In recent studies, it has been shown that when the ap- 

plied boundary conditions lie outside the employed field of view, IDIC suffers from inaccuracies. A typical 

example is a micromechanical parameter identification inside a Microstructural Volume Element (MVE), 

whereby images are usually obtained by electron microscopy or other microscopy techniques but the 

loads are applied at a much larger scale. For any IDIC model, MVE boundary conditions still need to be 

specified, and any deviation or fluctuation in these boundary conditions may significantly influence the 

quality of identification. Prescribing proper boundary conditions is generally a challenging task, because 

the MVE has no free boundary, and the boundary displacements are typically highly heterogeneous due 

to the underlying microstructure. The aim of this paper is therefore first to quantify the effects of er- 

rors in the prescribed boundary conditions on the accuracy of the identification in a systematic way. To 

this end, three kinds of mechanical tests, each for various levels of material contrast ratios and levels 

of image noise, are carried out by means of virtual experiments. For simplicity, an elastic compressible 

Neo-Hookean constitutive model under plane strain assumption is adopted. It is shown that a high level 

of detail is required in the applied boundary conditions. This motivates an improved boundary condition 

application approach, which considers constitutive material parameters as well as kinematic variables at 

the boundary of the entire MVE as degrees of freedom in the IDIC procedure, assuring that both are 

identified with equal precision and importance. This problem has been studied in the literature with a 

different method, i.e. Finite Element Method Updating framework. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Accurate identification of micromechanical parameters is impor-

ant in numerous areas of science and engineering. On the one

and, parameters are required for (complex) constitutive laws that

elp to predict, e.g., mechanical response, performance, or lifespan

f electronic, micro-electro-mechanical, or other mechanical de-

ices. On the other hand, they help to better understand complex

hysical processes in materials occurring across the scales, such

s plasticity, failure, ductile damage, or delamination and crack

rowth ( Hoc et al., 2003; Rupil et al., 2011; Blaysat et al., 2015;

uljac et al., 2017 ). 
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Due to their intrinsically small dimensions, micro- or nanoscale

echanical tests are challenging and necessitate advanced ex-

erimental methods. One such method is Digital Image Correla-

ion (DIC), which is a non-intrusive full-field measurement tech-

ique with high accuracy and reliability that emerged from the re-

ent progress in computer technology and digital imaging. In par-

icular, its integrated variant called Integrated Digital Image Corre-

ation (IDIC) has proven to be a reliable and accurate technique

or the identification of material parameters, see e.g. Roux and

ild (2006) , Leclerc et al. (2009) , Réthoré et al. (2009) , Réthoré

t al. (2013) , Neggers et al. (2015) and Ruybalid et al. (2016) . It

elies on the minimization of the difference between two images

aptured during an experiment (corresponding to the reference

nd a deformed configuration) inside the Region Of Interest (ROI).

he deformed image is back-deformed using a displacement field

hat is obtained from an underlying mechanical model with as-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Sketch of a typical experimental set-up. Mechanical test carried out on a 

specimen with a domain �, field of view �fov , and a region of interest �roi . 
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sumed constitutive laws and Boundary Conditions (BCs). The re-

quired basics of IDIC together with geometry, constitutive model,

and mechanical tests employed throughout this paper are specified

in more detail in Section 2 . 

If the BCs applied to a tested specimen lie outside the Field Of

View (FOV), IDIC suffers from inaccuracies ( Ruybalid et al., 2018 ).

This problem typically applies to micromechanical parameter iden-

tification, see Fig. 1 , whereby images are obtained by electron mi-

croscopy or other microscopy techniques and the loads are ap-

plied at a much larger scale. Prescribing proper boundary condi-

tions to a given Microstructural Volume Element (MVE) is a chal-

lenging task, as the MVE has no free boundary, and the displace-

ments along its boundary are highly heterogeneous due to the

presence of microstructural constituents with (highly) contrasting

mechanical behaviour at or near the boundary. This renders any

kind of idealized boundary conditions inappropriate. Several ap-

proaches have been proposed and tested in the literature to re-

solve this issue, based on Virtual Fields Method (VFM), as re-

ported e.g. in Grédiac et al. (2006) and Rahmani et al. (2014) ,

or Finite Element Method Updating (FEMU) with virtual bound-

aries, as proposed by Fedele (2015) . In this contribution, the

IDIC methodology will be adopted, which has been reported e.g.

by Tian et al. (2010) , Hild et al. (2016) , or Shakoor et al. (2017) . Ac-

cording to Shakoor et al. (2017) , so far the most accurate method-

ology employs Global Digital Image Correlation (GDIC) in order to

identify displacements that are subsequently applied as BCs to the

MVE associated with IDIC; this approach will be referred to as

GDIC-IDIC in the sequel. 

As well-known from the literature, cf. e.g. Bornert et al. (2009) ,

Leclerc et al. (2012) and Hild et al. (2016) , in general (G)DIC on the

one hand lacks sufficient kinematic freedom when large elements

or globally supported polynomials are used (kinematic smooth-

ing), while on the other hand it suffers from random errors when

relatively small elements or locally supported interpolation func-

tions are employed. This indicates a possible pitfall for the GDIC-

IDIC approach because, as the BCs are kept fixed during the IDIC

parameter identification procedure, any errors introduced through

the BCs remain locked. The only way in which the MVE model

can compensate for erroneous BCs is by adjusting the material

parameters—hence resulting in an inaccurate identification of these

parameters. 

The first aim of this paper is therefore to systematically quan-

tify the effects of inaccuracies in prescribed BCs on the accuracy of

the identification by means of virtual experiments. Some of the ob-

tained results can already be inferred from Fig. 2 , where effects of

kinematic smoothing are demonstrated. Without going into many

details, about which the interested reader is invited to learn more

in Sections 2 and 3 , we note that the identified parameters rapidly

deviate from their exact value with increasing smoothing kernel

size ε. The exact and smoothed BCs, for the worst case considered
 ε = 5 ), are shown in Fig. 2 c, indicating that small deviations are at

he root of relatively poor identification. This kind of behaviour is

ypical and can be explained by extensive constraints of the MVE

ystem by Dirichlet BCs applied along the entire boundary, and by

ssociated sensitivity fields of low magnitudes, as we will detail in

ection 3 . 

The second objective of this paper is to provide a methodol-

gy ensuring the desired high accuracy in identifying material pa-

ameters and boundary data. The proposed approach essentially in-

orporates all Degrees Of Freedom (DOFs) associated with bound-

ry nodes of the MVE model as DOFs in the IDIC procedure, and

ill be referred to as Boundary-Enriched Integrated Digital Im-

ge Correlation (BE-IDIC) in what follows. The method signifi-

antly improves the accuracy of the identified parameters while

eing robust with respect to image noise and material contrast ra-

io. Although this methodology may resemble the one proposed

y Fedele (2015) , in which kinematic BCs are also introduced as

OFs of the micromechanical parameter identification routine, im-

ortant differences exist. These differences will be discussed in

etail in Section 4 , along with a detailed description of the BE-

DIC. The paper finally closes with a summary and conclusions in

ection 5 . 

. Theory and problem statement 

The basics of DIC, needed for subsequent developments, are

rst recalled in this section. Next, three mechanical tests are de-

cribed that serve to demonstrate the sensitivity of the IDIC tech-

ology to Dirichlet BCs. In Section 4 , the same mechanical tests

ill be used to assess the BE-IDIC approach. Next, the constitutive

odel employed throughout this work is specified, and sensitivity

elds are shown. Finally, the speckle pattern and creation of de-

ormed images are briefly described. 

.1. Digital image correlation 

In its simplest form, DIC correlates two images captured dur-

ng an experiment, one in the reference configuration and one de-

ormed. These images are in essence scalar fields supported in the

OV, storing usually grey level values (e.g. integer numbers rang-

ng [0, 255] when 8-bit digitization is used). Upon defining a ROI,

ne aims to find a vector λ of n λ IDIC DOFs that minimizes in the

east-square sense the difference between grey values in the ref-

rence image and in the corresponding material points in the de-

ormed image as predicted by a displacement field u , i.e. 

λ ∈ arg min ̂ λ∈ R n λ
R ( ̂  λ) , 

R ( ̂  λ) = 

1 

2 

∫ 
�roi 

[ f ( X ) − g( X + u ( X , ̂  λ))] 2 d X . (1)

n (1) , X = [ X 1 , X 2 ] 
T ∈ R 

2 stores the material coordinates in the ref-

rence configuration, and u ( X , ̂  λ) = [ u 1 ( X , ̂  λ) , u 2 ( X , ̂  λ)] T is an ap-

roximate displacement field that is required in order to regularize

he otherwise ill-posed problem; for more details see e.g. Horn and

chunck (1981) . Throughout this work, the hatted variables ̂  • re-

ate to arbitrary admissible values, whereas the absence of hats in-

icates minimizers of the corresponding cost functional. As indi-

ated by the inclusion sign ∈ , the cost functional R may be non-

onvex with multiple minima; in such a case, the global minimum

s sought. 

If the approximate field u ( X , ̂  λ) is chosen such that 

 ( X , ̂  λ) = 

n λ∑ 

i =1 

ψ i ( X ) ̂  λi , (2)

ne recovers GDIC, where ψ i ( X ) are user-selected vector interpo-

ation (or basis) functions, usually expressed in terms of globally-
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Fig. 2. An example of identified results for a sheared specimen consisting of randomly distributed stiff inclusions embedded in a soft matrix, corresponding to 50 Monte 

Carlo realizations. Before identification, the exact boundary displacements are smoothed using the pillbox-shaped kernel with a dimensionless (normalized by inclusion’s 

size) diameter ε ∈ [0, 5]; the exact and smoothed displacements are compared in (c). For identification, �mve = �roi and zero image noise are used. A single parameter 

identification of the matrix shear modulus ( λ = G 1 ) is shown in (a); multiple parameter identification of the matrix and inclusion’s shear moduli together with inclusion’s 

bulk modulus ( λ = [ G 1 , G 2 , K 2 ] 
T ) are shown in (b). The thick lines correspond to the mean values whereas shaded areas delimit the standard deviations over all realizations. 
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r locally-supported polynomials. The variable ̂  λ = [ ̂  λ1 , . . . , ̂
 λn λ

] T ∈
 

n λ then constitutes an admissible vector of generalized displace-

ents. 

On the contrary, if 

 ( X , ̂  λ) ∈ arg min ̂ u ( X , ̂  λ) ∈ U ( ̂  λ) 

E( ̂  u ( X , ̂  λ) , ̂  λ) , (3)

s a solution to an underlying (elastic for simplicity) mechanical

ystem specified by its stored energy E and a proper function

pace U (see e.g. Evans, 2010 ), the IDIC method results. In prac-

ice, a Finite Element (FE) discretization of ̂ u ( X , ̂  λ) is used (see

.g. Zienkiewicz and Taylor, 20 0 0; Ciarlet, 20 02 ), typically given by

 

 ( X , ̂  λ) = 

n u / 2 ∑ 

i =1 

N i ( X ) ̂  u i ( ̂
 λ) , (4)

here ̂ u = [ ̂  u T 1 , . . . , ̂  u T n u / 2 
] 
T ∈ R 

n u , ̂ u i = [ ̂  u i 
1 
, ̂  u i 

2 
] T ∈ R 

2 , stores dis-

lacements of the i th node associated with a FE mesh in X 1 and X 2 

irections, and N i ( X ) are standard FE shape functions. In IDIC, λ̂
an store kinematic variables such as prescribed BCs, or material

onstants—hence the dependence of U as well as E on 

̂ λ. Simi-

arly to the DIC cost functional R specified in Eq. (1) , E may be

on-convex, allowing, e.g., for structural buckling and bifurcation. 

In order to minimize (1) , various approaches are being used.

lthough working only in the proximity of a local minimum, the

ost frequently employed one is a standard Newton, or more pre-

isely a Gauss–Newton algorithm, that iteratively solves the follow-

ng system of linear equations (obtained by a Taylor expansion of

he first-order optimality conditions in ̂

 λ): 

 

l ( ̂  λ
l+1 − ̂ λ

l 
) = −g l . (5) 

he individual components of the gradient g and Hessian H , de-
ived by differentiating (1) , read 

(g l ) i = (g( ̂  λ
l 
)) i 

= −
∫ 
�roi 

ϕ i ( X , ̂  λ) · ∇ f ( X ) 
[

f ( X ) − g( X + u ( X , ̂  λ)) 
]

d X 

∣∣∣∣̂ λ= ̂ λ
l 

, 

(H 

l ) i j = (H( ̂  λ
l 
)) i j = 

∫ 
�roi 

ϕ i ( X , ̂  λ) · ∇ f ( X ) ∇ f ( X ) · ϕ j ( X , ̂  λ) d X 

∣∣∣∣̂
 λ= ̂ λ

l 

. 

(6) 
ote that ∇(•) = ∂ (•) /∂ X , and that a simplified version of the

essian is used here, see Neggers et al. (2016) for further details.

n Eq. (6) , the so-called sensitivity fields, defined as 

 i ( X , ̂  λ) = 

∂ u ( X , ̂  λ) 

∂ ̂  λi 

, i = 1 , . . . , n λ, (7)

re required. In the case of GDIC, ϕ i ( X ) = ψ i ( X ) , i = 1 , . . . , n λ,

hereas in the case of IDIC, ϕ i ( X , ̂  λ) are obtained usually by nu-

erical perturbations of the FE solution, i.e. 

 i ( X , ̂  λ) = 

u ( X , ̂  λ + ε̂ λi e i ) − u ( X , ̂  λ) 

ε̂ λi 

, i = 1 , . . . , n λ, (8)

s explicit forms of the partial derivatives in Eq. (7) are rarely

vailable. In Eq. (8) , ε > 0 is a sufficiently small scalar perturba-

ion factor (set to ε = 1 × 10 −3 in all examples below), ̂ λi is the

 th component of ̂ λ, and e i denotes the i th standard basis vector

n R 

n λ . 

In order to solve the elastic mechanical minimization problem

pecified in Eq. (3) , standard solution techniques can be used, see

.g. Zienkiewicz and Taylor (1989) , Crisfield (1997) , Jirásek and Ba-

ant (2002) , Bonnans et al. (2006) and Nocedal and Wright (2006) .

.2. Considered virtual laboratory tests 

Three virtual mechanical tests will be considered, which pre-

ominantly introduce tension, shear, and bending, respectively.

hey reflect different mechanical behaviour, and most importantly

ield different sensitivity fields with respect to individual material

arameters. This is important especially when for instance a shear

est is performed and the bulk modulus is to be identified. Because

he sensitivity of the bulk modulus is in this particular case low (cf.

ection 2.4 ), one can expect large errors in the identified values. In

rder to identify all parameters accurately and reliably, multiple

ests may be carried out. All specimen geometries, BCs, ROI, FOV,

nd MVE are sketched in Fig. 3 . Here, one particular realization of

andomly distributed inclusions with a fixed diameter d = 1 in a

omogeneous matrix is depicted as well. All geometric properties

re dimensionless, but can be thought of as [μm] for microscale

mages. This is done for compactness, as the material models used

re size insensitive. 
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Fig. 3. Sketch of the considered mechanical tests—tension, shear, and bending. (a) Specimen geometry, (b) pure bending. � denotes specimen domain, �fov corresponds to 

the field of view, �roi to the region of interest, and �mve is the microstructural volume element representing the mechanical system in IDIC. 
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Table 1 

Material parameters for all employed examples. 

Physical parameters Matrix Inclusions 

( α = 1 ) ( α = 2 ) 

Shear modulus, G α 1 ρ

Bulk modulus, K α 3 3 ρ

Poisson’s ratio, να = 

3 K α−2 G α
2(3 K α+ G α ) 

0.35 0.35 
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a

the inclusions’ shear and bulk moduli G and K . 
The displacements prescribed at the specimen’s boundary,

∂� = 

⋃ 4 
i =1 �i , in the case of tension and shear read 

u ( X ) = ( F − I ) · X , X ∈ �2 ∪ �4 , 

F = I + 0 . 1 e 1 � e 1 , for tension , 

F = I + 0 . 1 e 2 � e 1 , for shear , (9)

whereas �1 and �3 are free edges. In the case of bending, pre-

scribed boundary conditions read 

u 1 ( X ) = 0 , X ∈ �4 , 

u ( X ) = 0 , X = �1 ∩ �4 , 

n (θ ) · ( X + u ( X ) − X 0 − u ( X 0 )) = 0 , 

X ∈ �2 , X 0 ∈ �2 arbitrary but fixed , (10)

where n (θ ) = [ cos θ, − sin θ ] T , θ ∈ [0, π /24], is the outer unit nor-

mal to the rotated boundary edge �2 inducing the bending ef-

fect, e 1 = (1 , 0) T , e 2 = (0 , 1) T , ( A · b ) i = A i j b j and a · b = a i b i de-

note the single contraction with implicitly implied summation rule,

and u ( X ), X ∈ �, is to be interpreted as displacements located on �.

The two horizontal edges, �1 and �3 , are left free again. After dis-

cretization, Eq. (10) 3 is enforced for all n �2 
nodes situated on �2 

part of the boundary. This yields a system of n �2 
− 1 equations that

can be enforced as a set of linear constraints 

C (θ ) u = d . (11)

The mechanical problem in Eq. (3) then transforms to an

equality constrained minimization, which can be solved us-

ing, e.g., the primal-dual formulation; for further details

see Bonnans et al. (2006) or Nocedal and Wright (2006) . 

2.3. Constitutive model 

A compressible Neo-Hookean hyperelastic material is adopted,

specified by the following elastic energy density 

 α( F ) = 

1 

2 

G α( I 1 − 3) + 

1 

2 

K α( ln (J)) 2 , (12)

where α = 1 corresponds to the matrix and α = 2 to the inclu-

sions. In Eq. (12) , F ( u ( X )) = I + ∇ u ( X ) denotes the deformation

gradient tensor (recall that X relates to the reference configura-

tion), J = det F , and I = J −2 / 3 tr ( C ) is the first modified invariant
1 
f the right Cauchy–Green deformation tensor C = F T · F . The ref-

rence values of material parameters are summarized in Table 1

s functions of the material contrast ratio ρ > 1. The underlying

echanical system, occupying domain �, is then specified by its

tored energy 

( u ( X )) = 

∫ 
�

χ1 ( X ) W 1 ( F ( u ( X ))) + χ2 ( X ) W 2 ( F ( u ( X ))) d X , 

(13)

nd by Dirichlet BCs reflected by the space of admissible solu-

ions U ; Neumann BCs are omitted, as these are typically not

xperimentally available. In Eq. (13) , χ1 ( X ) and χ2 ( X ) are in-

icator functions associated with the matrix and inclusions. For

he solution of the mechanical system, recall Eq. (3) , the To-

al Lagrangian formulation is used, see e.g. Tadmor et al. (2012) .

patial discretization relies on the Gmsh mesh generator, pre-

ented by Geuzaine and Remacle (2009) , employing quadratic

so-parametric triangular elements and the three-point Gaussian

uadrature rule. For the Direct Numerical Simulation (DNS), the

ne mesh shown in Fig. 13 a is used, whereas three typical MVE

riangulations can be found in Fig. 14 . Because both Poisson’s ra-

ios are significantly smaller than 0.5 and because deformations

n all simulations remain moderate, no incompressibility issues

rise. Typical DNS results are presented in terms of strain fields

n Fig. 4 . The results show that, in accordance with Eq. (9) , the

verall strain for the tension and shear test corresponds to 10 %,

hereas peak strains achieve values as high as 27 %. In the case

f bending, the overall strain is zero, whereas peak values achieve

pproximately 2 % of strain. 

In the context of IDIC, the parameters to be identified are 

• the matrix shear and bulk moduli G 1 and K 1 

•
 2 2 
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Fig. 4. Typical realizations of resulting DNS strain fields corresponding to individual mechanical tests. (a) F 11 ( X ) − 1 for the tension test, (b) F 21 ( X ) for the shear test, and (c) 

F 11 ( X ) − 1 for the bending test. In all cases, X ∈ �roi . 
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1 It is important to realize that when MVE boundary conditions are fixed during 

an IDIC minimization procedure (GDIC-IDIC approach), boundary sensitivity func- 

tions are not part of the optimization problem. Hence, ˜ ϕ bc 
i 

measure how rapidly 

solutions to approximate optimization problems (with erroneous boundary condi- 

tions) deviate from the solutions corresponding to the correct optimization prob- 

lems (with the exact boundary data). Although derived conclusions hold only in the 

vicinity of a given configuration of the system due to linearization (providing thus 

only qualitative information), low absolute values of boundary sensitivity functions 

confirm the importance of the accuracy in the prescribed MVE BCs. 
As Dirichlet BCs are applied on the entire boundary of the MVE,

�mve , only material parameter ratios can be extracted from the

DIC procedure. This holds true unless additional measurements,

uch as the applied load, are included in the objective function

efined in Eq. (1) , which is not done here as such data are not

eadily accessible in micro-mechanical testing of a microstructure;

ecall the discussion in the introduction. As a consequence, in or-

er to induce normalization one needs to fix one of the parame-

ers to an arbitrary value (exact in our case of virtual experiments),

nd identify the remaining parameters relative to that reference.

he fixed material parameter can be estimated by an independent

orce-based mechanical test or from reliable experimental sources

or one of the phases. 

.4. Sensitivity fields 

The normalized sensitivity fields corresponding to the shear

est, exact Dirichlet BCs applied to ∂�mve , and all material param-

ters for ρ = 4 , are shown in Fig. 5 inside the ROI ( �mve = �roi ).

he adopted normalization reads 

˜ 

 i ( X , ̂  λ) = 

| λi | ‖ ϕ i ( X , ̂  λ) ‖ 2 

max Y ∈ �roi 
‖ u ( Y , ̂  λ) ‖ 2 

, (14)

.e. the magnitude of the sensitivity field is normalized by the

eak displacement measured inside ROI over the value of the IDIC

OF. Fig. 5 shows that the sensitivity field corresponding to the

nclusion’s bulk modulus K 2 ( Fig. 5 d) is one order of magnitude

maller compared to the remaining sensitivity fields. This implies

hat lower accuracy in identified parameter K 2 compared to G 1 ,

 2 , and K 1 should be expected. Furthermore, patterns correspond-

ng to the two shear moduli G 1 and G 2 (shown in Fig. 5 a and

) are surprisingly similar, meaning that accurate identification of

ssociated material parameters may be compromised because a

hange in one parameter has almost the same (or the opposite)

echanical effect as a change in the other parameter. Similarity

f two sensitivity fields is quantified by their cross-correlation,

ttaining the value corr ( ϕ G 1 
, ϕ G 2 

) ≈ −0 . 945 in the case of G 1 

nd G 2 , whereas cross-correlations of the remaining combinations

re smaller than 0.35 in their absolute values. 

Further, we introduce boundary sensitivity functions ϕ 

bc 
i 

(ξ , ̂  λ) ,

efined as traces (on ∂�mve ) of material sensitivity fields asso-

iated with the DNS. They are obtained according to the defini-

ion of Eq. (8) with the only difference that they are computed

ver the entire domain �, evaluated at ∂�mve , and expressed as

unctions of ξ , which is a parametric coordinate along ∂�mve (see

ig. 3 ). The boundary sensitivity functions normalized according to
q. (14) are denoted 

˜ ϕ 

bc 
i 

(ξ , ̂  λ) and presented in Fig. 6 . By defini-

ion, ˜ ϕ 

bc 
i 

measure how the DNS displacements at the MVE bound-

ry change under perturbations of the material parameters. 1 These

urves reveal that, in the case of shear for instance, when the

aterial parameters change in the order of 100 %, the boundary

isplacements change on average in the order of 3 % relative to

heir peak values. Notice also that various parts of the boundary

eact differently: whereas for shear and tension the vertical MVE

oundaries change less under perturbations in material parame-

ers than the horizontal boundaries, in the case of bending the

oundary sensitivity functions are almost constant. Moreover, the

ension test is approximately one order of magnitude more robust

ompared to the shear and bending tests; this observation may be

seful in real experiments, or may serve for the design of experi-

ents that are optimal with respect to boundary sensitivity func-

ions. It is worth mentioning that although containing essential in-

ormation, the boundary sensitivity functions require considerable

omputational effort for virtual experiments or DNSs. 

.5. Speckle pattern, reference and deformed images 

The reference image f , employed to represent the applied

peckle pattern has been adopted from (Bornert et al., 2009,

medium pattern size”) and is partly shown in Fig. 7 . Its res-

lution is 512 × 512 pixels inside FOV, which corresponds ap-

roximately to 340 × 340 pixels inside ROI. For completeness, the

orresponding histogram and autocorrelation function are shown

s well. Additional image quality descriptors are summarized in

able 2 , where the correlation length � c is defined as the radial

istance at which the autocorrelation function equals 1/2. More

etails about the mean intensity gradient δf can be found e.g.

n Pan et al. (2010) . 

In order to produce deformed images g resulting from all me-

hanical tests, the DNS results (recall Fig. 4 ) are used. The com-

uted displacement fields are used to map the initial image f

nto the deformed configuration in 10 time increments. Subse-

uently, the deformed images are interpolated at pixel positions
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Fig. 5. Normalized sensitivity fields ̃  ϕ i , recall Eq. (14) , evaluated for the shear test, exact material and kinematic data, ρ = 4 , and for �mve = �roi . For clarity, presented plots 

are normalized to one whereas corresponding magnitudes are mentioned in individual captions. Sensitivities correspond to (a) shear modulus of the matrix G 1 , (b) bulk 

modulus of the matrix K 1 , (c) shear modulus of the inclusions G 2 , and (d) bulk modulus of the inclusions K 2 . 

Fig. 6. Boundary sensitivity functions ˜ ϕ bc 
i 

(ξ , ̂  λ) on the MVE boundary for (a) tension, (b) shear, and (c) bending tests corresponding to material contrast ratio ρ = 4 

and �mve = �roi . 
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Fig. 7. Initial image f ; (a) speckle pattern inside ROI, (b) corresponding histogram, and (c) autocorrelation function. 

Table 2 

Speckle pattern parameters. 

Pattern quality parameters Image f 

Root-mean-square value, RMS 138.769 

Mean intensity gradient, δf 38.940 

Correlation length, � c 2.179 pixels 

Quality factor, Q = δ f /� c 17.870 
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sing bi-cubic polynomial interpolation. Note that the peak dis-

lacements inside the ROI measure approximately to 21 (tension),

0 (shear), and 16 (bending) pixels, i.e. relatively large displace-

ents compared to the typical correlation length � c = 2 . 18 re-

orted in Table 2 . 

. Influence of inaccuracy in kinematic boundary conditions 

Using the proposed methodology, models, test examples, and

ata presented in Section 2 , the influence of two kinds of errors in

Cs prescribed to the MVE model are next examined. First, the ef-

ects of uncorrelated random noise, followed by smoothing of kine-

atic fields, and finally the combined effect of both error sources

temming directly from the GDIC method itself are studied. In all

ases, and throughout this paper, IDIC is always carried out for two

mages only (the reference and deformed ones at the beginning

nd at the end of all time increments), whereas GDIC is carried

ut as an evolutionary process at all increments due to its lower

obustness with respect to large displacement changes. This has no

ractical implications except that multiple time steps help GDIC to

ocate the proper minimum. 

.1. Influence of random noise 

To quantify the effect of random noise, the following test is

erformed. �mve = �roi is adopted and Dirichlet BCs are sampled

y interpolating the DNS displacements directly at the nodal po-

itions of the MVE boundary (i.e. without the use of GDIC). Note

hat below, all interpolations at nodal or pixel positions are car-

ied out by inverting the iso-parametric mappings of the under-

ying FE approximations, unless explicitly stated otherwise. Subse-

uently, random uncorrelated noise is superimposed on the bound-

ry displacement, i.e. 

 mve ( X ) = u dns ( X ) + σ max 
Y ∈ �mve 

(‖ u dns ( Y ) ‖ 2 ) U , X ∈ ∂�mve , (15)

here u mve ( X ) , X ∈ ∂�mve , denotes a column storing the nodal dis-

lacements at the boundary nodes of the MVE, u ( Y ), Y ∈ �mve ,
dns 
enotes a vector of DNS displacements restricted on �mve , u dns ( X ) ,

 ∈ ∂�mve , is a column of DNS displacements u dns evaluated at the

VE boundary nodes, U is the corresponding column of Indepen-

ent and Identically Distributed (iid) random variables with uni-

orm distribution over [ −0 . 5 , 0 . 5] , and σ reflects the standard de-

iation of the random noise in the prescribed BCs. The iid variables

an be used because of the rather homogeneous triangulations, see

ig. 14 . In general, the noise in prescribed BCs has an experimental

rigin in image noise. 

The results for the shear test, zero image noise, medium MVE

esh (shown in Fig. 14 b), ρ = 4 , σ ∈ [0, 0.1], and 50 Monte

arlo (MC) realizations for each value of σ with random noise in

oundary data are presented in Fig. 8 . The peak noise displace-

ent deviations (corresponding to σ = 0 . 1 ) attain values of ap-

roximately 0 . 5 × 0 . 1 × 20 = 1 pixel (recall Section 2.5 ). Note also

hat for each MC realization, a different microstructure with ran-

om spatial distribution of circular inclusions is generated in or-

er to avoid any bias due to morphology. In Fig. 8 , the thick lines

enote the mean values over all realizations, whereas dashed lines

elimit the mean values ± corresponding standard deviations. The

esults indicate that even though the identification of a single ma-

erial parameter λ = G 1 may be rather satisfactory ( Fig. 8 a), the ac-

uracy is compromised by the random noise in the case of multiple

arameters λ = [ G 1 , G 2 , K 2 ] 
T , as the curves start to deviate from 1

or values of σ as low as 0.025 ( Fig. 8 b). The typical relative error

n the prescribed boundary conditions, defined as 

BC 
rel = 

‖ u mve ( X ) − u dns ( X ) ‖ 2 

‖ u dns ( X ) ‖ 2 

, X ∈ ∂�mve , (16) 

an be inspected in Fig. 9 c. Although not all presented, the re-

aining mechanical tests, material contrast ratios, and material

arameter combinations display similar trends, cf. Fig. 9 , except

or the tension test, which is more robust as already remarked in

ection 2.4 , recall also Fig. 6 . 

Because random errors in DIC are usually expressed relative

o the given pixel size, we next present a noise study in which

he magnitude of random noise added to exact DNS bound-

ry displacements is kept constant. At the same time, the level

f overall applied strain is monotonically increased according to

qs. (9) and (10) . Analogously to Eq. (15) , applied boundary dis-

lacements are expressed as 

 mve ( X ) = u dns ( X ) + 2 σpx U , X ∈ ∂�mve , (17)

here σ px is the fixed level of the displacement noise magnitude

n pixels, while the remaining quantities have the same meaning

s in Eq. (15) . Obtained results for the shear test, zero image noise,

edium MVE mesh (cf. Fig. 14 b), ρ = 4 , σ px ∈ px · {0.01, 0.1, 0.25},
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Fig. 8. Identified results in the case of the shear test, random noise in BCs with increasing σ ∈ [0, 0.1], cf. Eq. (15) , �mve = �roi , and zero image noise; (a) λ = G 1 , (b) λ = 

[ G 1 , G 2 , K 2 ] 
T , and (c) an example of boundary data for σ = 0 . 1 . 

Fig. 9. Identified results in the case of random noise in BCs with increasing σ , cf. Eq. (15) , �mve = �roi , and zero image noise; (a) tension and (b) bending test for material 

parameters λ = [ G 1 , G 2 , K 2 ] 
T . (c) Typical dependence of the relative error in BCs, cf. Eq. (16) , on σ for the case of tension. 
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and 50 MC realizations are shown along with relative errors in

prescribed BCs in Fig. 10 . Here we notice that although the er-

ror in prescribed BCs is rather small, and naturally decreases with

the applied level of overall strain, the corresponding deviations in

the material parameters from the exact values are significant, espe-

cially in cases with σpx = 0 . 1 and 0.25 px. For the case of lower DIC

error bound, i.e. σpx = 0 . 01 px, the results seem to rapidly reach

accurate values. Note, however, that in the case of highly hetero-

geneous displacement fields, such a level of accuracy may be chal-

lenging to reach, cf. also Section 3.3 where actual DIC data is used.

Although not presented, we note that the results corresponding to

the tensile test display less sensitivity to errors in prescribed BCs,

and hence the achieved accuracy is higher. The bending test on the

other hand shows error levels that are comparable to those of the

shear test. 

It is important to note that in practice only a limited number

of experiments or observations is carried out (e.g. two or three),

meaning that standard deviation is of more importance than the

mean value of the identified parameter. Therefore, in situations in

which the mean value is accurate and the standard deviation is

large, erroneous identification may be expected as not enough sta-

tistical data is usually available. 

d  
.2. Influence of smoothing 

As a next step, the effect of smoothing is examined. To this end,

he exact DNS displacement field is smoothed according to 

 

 dns ( X ) = 

∫ 
�

u dns ( Y ) h ε ( Y − X ) d Y , (18)

here h ε denotes the pillbox-shaped kernel with a dimension-

ess diameter ε ≥ 0 (normalized by the inclusion’s diameter d ). The

moothed data are subsequently prescribed as nodal displacements

o the discretized MVE model: 

 mve ( X ) = ̃  u dns ( X ) , X ∈ ∂�mve , (19)

n Eq. (19) , ̃  u dns ( X ) , X ∈ ∂�mve , again represents a column of dis-

lacement evaluations of ˜ u dns at the MVE boundary nodes. For

ase of implementation, the integral in Eq. (18) has been carried

ut at discrete pixel positions numerically, while the corresponding

isplacements have been interpolated using a linear interpolation

cheme. 

Fig. 2 shows the obtained results for the case of shear, medium

VE mesh (shown in Fig. 14 b), ρ = 4 , �mve = �roi , and zero image

oise, which once again confirms the need for accurate boundary

ata. Similarly to the random errors presented in Fig. 8 , it is clear
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Fig. 10. Identified material parameters λ = [ G 1 , G 2 , K 2 ] 
T for the case of random noise in BCs with fixed magnitude σ px , cf. Eq. (17) , expressed as a function of overall applied 

strain. (a) σpx = 0 . 01 , (b) σpx = 0 . 1 , and (c) σpx = 0 . 25 px. In all cases, the shear test with �mve = �roi and zero image noise has been used. 

Fig. 11. Identified results as a function of increasing dimensionless kernel size ε of the moving average for: (a) tension and (b) bending test, �mve = �roi , zero image noise, 

λ = [ G 1 , G 2 , K 2 ] 
T . (c) Typical dependence of the relative error in BCs, cf. Eq. (16) , on ε for the case of tension. 
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hat not only the standard deviations, but also the mean values

apidly deviate from 1 for erroneous BCs. Note that the smooth-

ng effect for the applied maximum kernel size ( ε = 5 ), shown in

ig. 2 c, is not excessively large (see also Fig. 11 c), yet the mean val-

es start to deviate from 1 already at ε = 0 . 5 . Eliminating bound-

ry fluctuations by smoothing therefore has a significant erroneous

nfluence. Results for the other two mechanical tests, three mate-

ial contrast ratios, and all other parameter combinations exhibit

imilar trends to those of Fig. 2 , and can be inspected in Fig. 11 . 
a  

c  

e  
The non-zero, but extremely small, values of the standard devi-

tions observed in Figs. 2 and 8 for ε = 0 and σ = 0 originate from

he image and displacement interpolations. 

.3. Influence of global digital image correlation 

In the light of the results obtained from the two previous sec-

ions, a question arises how important the effects of random noise

nd smoothing induced by GDIC are in the GDIC-IDIC approach, re-

alled for completeness in Algorithm 1 . As is known from the lit-

rature, cf. e.g. Leclerc et al. (2012) , and indicated in the introduc-
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Fig. 12. Scheme showing all combinations used for microstructural identification. For each of the 108 test cases shown, 50 MC realizations with random microstructures 

have been computed. 

Algorithm 1 GDIC-IDIC approach. 

1: Construct a GDIC triangulation~T gdic of~�gdic 
roi 

and build~ψ i , cf. 

Eq. (2). 

2: Perform GDIC on~�gdic 
roi 

. 

3: Triangulate~�mve and assemble MVE model. 

4: Sample the MVE BCs on~∂�mve from GDIC data. 

5: Perform IDIC on~�idic 
roi 

( �idic 
roi 

⊆ �mve ⊂ �gdic 
roi 

). 
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tion, a delicate balance between smoothing and random errors has

to be found. A limit in terms of displacement accuracy that cannot

be overcome by GDIC will therefore always exist for a given pixel

resolution. For vanishing error in the GDIC data, however, one can

expect accurate identification. 

To systematically study the effects of the boundary conditions

established by the GDIC on the subsequent IDIC identification, the

following test is performed. GDIC with FE interpolation functions

and quadratic iso-parametric triangular elements is employed. The

element size of the structured GDIC mesh is increased from fine to

coarse; the two extremes are shown in Fig. 13 b and c. For each

of these GDIC meshes, the IDIC identification is carried out for

various combinations of material parameters, three MVE meshes

(shown in Fig. 14 ), three material contrast ratios, and the three

considered mechanical tests. All considered test cases are shown

schematically in Fig. 12 . As indicated in Algorithm 1 , strict inclu-

sion (i.e. �mve ⊂ �gdic 
roi 

) is adopted to eliminate large errors close

to the �gdic 
roi 

boundary, cf. e.g. Réthoré et al. (2008) . The margin

is chosen to be one MVE mesh element size thick. Furthermore,

because the GDIC minimization would fail in the case of fine tri-

angulations (even for 10 time increments), a mechanical regular-

ization based on the Equilibrium Gap method has been adopted;

see Tomi ̌cevi ́c et al. (2013) for further details. The weight associ-

ated with the elastic regularization potential is progressively de-

creased to zero throughout the iteration process, meaning that the
mployed regularization merely helps the GDIC algorithm to locate

he proper minimum. 

Partial results obtained for the three mechanical tests, medium

VE meshes, zero image noise, and material contrast ratio ρ = 4 ,

re depicted in Fig. 15 . Here, the effects of both random error (for

mall GDIC mesh element size h ) and smoothing (large h ) result-

ng from the GDIC can be observed. For large GDIC elements the

ffect of smoothing is highly pronounced, even significantly bias-

ng the mean values, whereas the random error affects mainly the

tandard deviations and has a less extensive impact. This holds es-

ecially for the shear and bending tests, which are generally more

ensitive to the accuracy of the prescribed BCs (recall Fig. 6 ). Typi-

al minimum values of the relative error (defined in Eq. (16) ) that

ere achieved by the GDIC are approximately 1 %, 0.5 %, and 0.1 %

or the tension, shear, and bending test. For a GDIC triangulation

hat may be considered reasonable ( h/d = 0 . 5 ), the typical relative

rror increases approximately to 1.5 %, 0.9 %, and 0.2 %. It is impor-

ant to note that in practice no means are available to a priori de-

ermine the optimal GDIC mesh. 

The remaining material combinations exhibit similar trends to

hose of Fig. 15 and are therefore not all shown here. When fine

VE meshes instead of medium ones are used, the accuracy of

he identified parameters increases, whereas for the coarse MVE

eshes it decreases, see Fig. 16 a and b. A decrease in accuracy is

bserved also for a higher material contrast ratio, cf. Fig. 16 c. In

eneral, the higher the contrast ratio, the more sensitive the IDIC

s to the boundary data (and hence also the less accurate). 

Examples of boundary displacements obtained from the GDIC

ompared to the exact DNS solutions are presented in Fig. 17 ,

hich shows that the apparently accurate GDIC data, especially for

he fine GDIC mesh, are in sharp contrast with the inaccurate iden-

ifications they induce, as shown in Figs. 15 and 16 . The errors of

he GDIC data on the MVE boundary relative to the DNS solution

re also indicated in the bottom part of Fig. 15 . 

Finally, let us note that the MVE mesh itself can be directly

sed for GDIC as well, removing thus one interpolation step. This

ption has also been tested, but has not brought any significant
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Fig. 13. Typical discretizations employed in the simulations. (a) DNS unstructured mesh, typical element size h ≈ d /9, approx. 25 pix/triangle, (b) GDIC fine structured mesh, 

h = d/ 8 , approx. 36 pix/triangle, and (c) GDIC coarse structured mesh, h = 5 d/ 4 , approx. 3600 pix/triangle. In all cases, quadratic iso-parametric elements were used. 

Fig. 14. Three MVE meshes employed in the simulations. (a) Fine mesh, typical element size h ≈ d /6, approx. 50 pix/triangle, (b) medium mesh, h ≈ d /4, ap- 

prox. 140 pix/triangle, and (c) coarse mesh, h ≈ d /3, approx. 270 pix/triangle. In all cases, quadratic iso-parametric elements were used. 
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mprovement of the statistical scatter in the data. The achieved ac-

uracy improved only in some particular cases, depending on the

opology of employed MVE meshes. 

. Boundary-enriched integrated digital image correlation 

From Sections 2.3 and mainly 3 it has become clear that slight

naccuracies in the BCs of the MVE model significantly deteriorate

he accuracy of the identified parameters. One way of attenuat-

ng these adverse effects would be to decrease the overall sensitiv-

ty of the IDIC procedure to the prescribed MVE BCs. This can be

chieved, for instance, by prescribing BCs in the weak sense, giv-

ng more freedom to the system to accommodate boundary fluctu-

tions. Such an approach would, nevertheless, rely on the assump-

ion that the given system spontaneously adopts a correct config-

ration, which is rather unlikely. Another strategy could rely on

dopting a large MVE domain (while keeping the ROI relatively

mall) and letting physical effects smoothing out any errors in BCs

hrough Saint-Venant’s Principle, cf. e.g. Toupin (1966) . This strat-

gy would work, but presumably only for random and not for sys-

ematic errors. The last option is to provide as accurate boundary

ata as possible, relying on the continuous dependence of solu-

ions of well-posed partial differential equations on the given data,
f. e.g. Evans (2010) . Assuming a correct constitutive law, morphol-

gy of the MVE model, and omitting any instability or other soft-

ning effects, this means that the experimentally observed con-

guration can be reached only for unique boundary data. To this

nd, an approach that treats the displacements of all nodes on

he boundary of the MVE model as DOFs of the IDIC procedure

s introduced, referred to as Boundary-Enriched IDIC (BE-IDIC) for

hort. This allows the MVE model to relax any inaccuracies in BCs

hich, when prescribed rigidly, lock errors that later propagate

o the identified parameters. Although BE-IDIC may resemble the

ethodology proposed by Fedele (2015) , the following important

ifferences exist: 

(i) whereas the work of Fedele (2015) is set within the Fi-

nite Element Method Updating (FEMU) framework, BE-

IDIC is defined within the realm of IDIC, with demon-

strated advantages in terms of robustness and accuracy

(see Ruybalid et al. 2016 ), 

(ii) as a consequence of (i), the resulting IDIC problem is well-

posed and hence solvable even for full kinematic resolu-

tion of the boundary; this is in contrast with the method

by Fedele (2015) , for which the author himself points its ill-

posedness, 



252 O. Rokoš et al. / International Journal of Solids and Structures 146 (2018) 241–259 

Fig. 15. Identified material parameters for the GDIC-IDIC approach as a function of the typical GDIC mesh element size h ∈ d 
8 

[1 , 10] , recall Fig. 13 b and c, material contrast 

ratio ρ = 4 , zero image noise, and λ = [ G 1 , G 2 , K 2 ] 
T . The identification is shown for three mechanical tests: (a) tension, (b) shear, and (c) bending. 

Fig. 16. Identified material parameters for the GDIC-IDIC approach as a function of the typical GDIC mesh element size h ∈ d 
8 

[1 , 10] for λ = [ G 1 , G 2 , K 2 ] 
T and zero image 

noise. (a) Shear test for fine MVE meshes and ρ = 4 , (b) shear test for coarse MVE meshes and ρ = 4 , and (c) shear test for medium MVE meshes and ρ = 16 . 
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(iii) because the proposed methodology addresses the general

case of highly heterogeneous nonlinear materials, smooth

regularization of boundary data is not possible (in contrast

to the method of Fedele, 2015 ), 

(iv) for cases slightly less heterogeneous, in which full resolution

of the boundary kinematics is not required, an adaptive al-

gorithm is proposed to automatically find the correct bound-

ary kinematics regularization (with option to reach the full

resolution case); the method by Fedele (2015) requires, on

 

t  
the other hand, a prior choice of regularization (properly se-

lected by the user). 

In order to demonstrate the advantages and robustness of the

ntroduced method, the examples from Section 2.2 are performed

gain and compared to the best results obtained from the GDIC-

DIC approach. Subsequently, a noise study is carried out to assess

he robustness of both methods under more realistic measurement

onditions. 

Before proceeding, let us note that Buljac et al. (2017) mention

hat as long as the BCs capture the mesoscopic kinematic features,
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Fig. 17. GDIC boundary displacements corresponding to two extreme mesh element sizes, cf. Fig. 13 b and c, compared to the DNS data for ρ = 4 , zero image noise, and (a) 

tension, (b) shear, and (c) bending test. 
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Algorithm 2 Adaptive boundary-enriched integrated digital image 

correlation. 

1: Construct triangulation~T mve of~�mve and assemble MVE 

micro-model. 

2: Initialize piecewise affine interpolation along the MVE 

boundary~∂�mve such that only~4 MVE corner nodes result. 

3: while DOFs of all nodes at~∂�mve are not included in~̂ λkin 

and given tolerance in~R ( ̂  λ) is not met. 

(I): Perform IDIC on~�idic 
roi 

for~̂ λ = [ ̂  λ
T 

mat , ̂
 λ
T 

kin ] 
T ; iterate to 

convergence. 

(II): Refine boundary interpolation: add mid-nodes be- 

tween current boundary nodes, include their DOFs 

into~̂ λkin and initialize them through linear interpo- 

lation. 

4: end 
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hey are sufficient for identification of micromechanical properties

f cast iron. Although their conclusion builds on a tension test,

hich is relatively robust (recall Figs. 6 a and 15 a), the previous

ections of this contribution indicate that such a statement should

ot be generalized for highly heterogeneous microstructures, be-

ause one cannot a priori conjecture on the kind of loading inside

 chosen ROI due to heterogeneities, existing percolation paths, or

ther effects. 

.1. Description of the method 

The BE-IDIC is an IDIC methodology that considers material pa-

ameters as well as the vector of displacements associated with

odes on the MVE boundary as unknowns, i.e. 

 = [ ̂  λ
T 

mat , ̂
 λ
T 

kin ] 
T , (20)

here ̂ λmat = [ G 1 , K 1 , . . . ] 
T , ̂ λkin = u mve ( X ) , X ∈ ∂�mve . 

(21) 

he brightness cost functional R ( ̂  λ) , defined in Eq. (1) , is subse-

uently minimized following the standard IDIC procedure detailed

n Section 2.1 , cf. also Algorithm 2 . Compared to the GDIC-IDIC ap-

roach, the number of IDIC DOFs being optimized in the BE-IDIC

ethod increases by n λkin 
. Note also that when accurate kinematic

nitialization through GDIC is provided, Algorithm 2 can be simpli-

ed by removing the refinement loop. 

Because GDIC is based purely on a geometric concept (in ab-

ence of a mechanical regularization), the mechanical significance

nd accuracy of the displacements relate to the shape and sup-

ort size of individual interpolation functions ψ i . On the contrary,

n the BE-IDIC method the mechanical significance of kinematic

oundary DOFs derives from the underlying mechanics through

heir sensitivity fields (this is in a sense true mechanical regu-

arization). Recall for clarity Section 2.4 and remember that the

ensitivity fields associated with 

̂ λkin are computed through the

VE model, and are different from the boundary sensitivity func-

ions defined as traces on ∂�mve of the sensitivity fields computed
hrough the DNS model of the entire specimen. Therefore, if a

oundary node happens to be part of a stiff particle, cf. Fig. 18 a, its

ensitivity field has a larger magnitude compared to the sensitivity

eld corresponding to a node in a soft matrix, shown in Fig. 18 b.

he proposed method therefore automatically corrects for the dis-

lacements of all boundary nodes, while at the same time taking

nto account their mechanical importance. Fig. 18 further shows

hat the kinematic sensitivity fields are supported only in a close

icinity of the boundary, whereas the material sensitivity fields are

upported inside the full MVE but vanish on ∂�mve (recall Fig. 5 ).

his means that no danger of high correlations between them ex-

sts. Finally, as already noted in Section 3.3 , for the GDIC-IDIC ap-

roach the employed �gdic 
roi 

should be larger than �idic 
roi 

in order to

educe the errors in the BCs. A certain portion of the micro-image

s hence sacrificed for the identification of BCs, which is avoided in

he BE-IDIC method. 

Overall, the main assets of the BE-IDIC method can be summa-

ized as follows: 

• consistency; material parameters have the same influence in

minimization of R as BCs have, and are identified with an ac-
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Fig. 18. Normalized kinematic sensitivity fields ˜ ϕ i , recall Eq. (14) , evaluated for the shear test, exact material and kinematic data, ρ = 4 , and for �mve = �roi . Sensitivities 

correspond to (a) the vertical displacement of a node which is part of a stiff particle, and (b) to the horizontal displacement of a node which is part of a compliant matrix. 

For clarity, presented plots are normalized to one whereas corresponding magnitudes are mentioned in individual captions. 

Fig. 19. Errors in identified material parameters for the BE-IDIC approach as functions of average edge element size at the MVE boundary. The results correspond to one MC 

realization and (a) tension, (b) shear, and (c) bending test; ρ = 4 , �mve = �roi , images with zero noise, and all types of MVE meshes used. 
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curacy corresponding to their mechanical significance (reflected

by their sensitivity fields); 
• boundary fluctuations are resolved automatically, weighted by

their true mechanical significance; BCs do not lock errors; 
• the entire micro image is used for material identification; 
• simplicity; no direct need for a separate GDIC procedure. 

However, some disadvantages should also be emphasized: 

• computational intensity (a large number of IDIC DOFs, ̂  λkin ); 
• high memory requirements (a large number of sensitivity

fields); 
• sensitivity to initial guess due to high-dimensionality of ̂  λ; 
• for highly irregular meshes (when very short and long element

edges at ∂�mve occur) the IDIC Hessian H may be poorly scaled.

All of the above-listed disadvantages can be partially remedied

as follows. Although the high computational intensity may not be

a real concern compared to the effort involved in performing an

accurate micro-mechanical test under in-situ microscopic observa-

tion, it can be attenuated by computing sensitivity fields associated

with 

̂ λkin selectively, not in each iteration. As sensitivity fields are

corrections from the current iterative state ̂ λ to a perturbed state
 ̂

 λ + ε̂ λi e i ), recall Eq. (8) , they can be resolved by a single New-

on iteration, requiring only one factorization of the mechanical

tiffness matrix solved for n λkin 
right hand sides. High memory re-

uirements can be reduced by truncating all kinematic sensitivity

elds in space, as they are locally supported in the close vicinity of

he MVE boundary (recall Fig. 18 ), and by employing sparse data

torage. The sensitivity to the initial guess values can be improved

y adaptive refinement in the boundary, recall Algorithm 2 , which

ystematically increases the number of IDIC DOFs. Adaptivity also

ddresses the last disadvantage, as too fine elements can be clus-

ered to larger edge units. 

.2. Examples 

First, convergence of the identified material parameters is

emonstrated as a function of average element size on the MVE

oundary. The obtained results are shown in Fig. 19 for one re-

lization, all three mechanical tests, material contrast ratio ρ = 4 ,

mve = �roi , zero image noise, and all MVE meshes. The curves

ndicate that in all cases, a high level of detail is required (re-
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Fig. 20. (a) Typical heterogeneous displacement component u 1 ( ̂
 ξ ) along the right vertical MVE edge, corresponding to the shear test. (b) The relative displacement error 

( Eq. (16) ) as a function of the number of Chebyshev polynomials n poly used for the approximation of u 1 by the least squares method. 

Fig. 21. Typical convergence of relative errors in sensitivity fields corresponding to material and kinematic DOFs for fine MVE meshes. (a) Both material and BCs are 

initialized with 10 % systematic error, and (b) only material parameters are initialized with 10 % systematic error, whereas BCs are initialized through GDIC. 

Fig. 22. The mean values and standard deviations for the identified material parameters obtained for the BE-IDIC method and the best configuration of the GDIC-IDIC 

method. The results correspond to fine MVE meshes, ρ = 4 , zero image noise, one set of identified material parameters λ = [ G 1 , G 2 , K 2 ] 
T , and 50 MC realizations. 
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ected by slow convergence). Identification starts to rapidly im-

rove only for element sizes comparable to the microstructural ge-

metric property d , meaning that the BCs should capture micro-

copic features when accurate identification is required. Meso- or

acroscopic features do not suffice. 
s  
Presented results also indicate that a straightforward regulariza-

ion of boundary displacements may compromise accurate iden-

ification of material parameters if an insufficiently rich basis is

sed. This holds especially in the case of smooth functions such

s Chebyshev polynomials, suggested by Fedele (2015) . See for in-

tance Fig. 20 a, where a typical horizontal displacement compo-
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Fig. 23. RMS values, defined in Eq. (22) , corresponding to all 108 test cases. For the GDIC-IDIC approach, the best configuration is presented, i.e. ηrms ( h opt ), whereas for the 

BE-IDIC approach ηrms does not depend on ̂  h . Identification carried out for zero-noise images. 

 

 

 

 

 

 

 

 

 

a  

t  

i  

D  

a  

a  

c  

c  

v  

b  

o  
nent u 1 ( ̂
 ξ ) is shown as a function of a normalized parametric co-

ordinate ̂ ξ (spanning the right vertical MVE edge). The approxi-

mation quality of Chebyshev polynomials is measured by the rela-

tive displacement error in Fig. 20 b, which quantifies the difference

between the exact DNS results and a least squares fit; here, the

dashed line corresponds to the number of FE nodes located on one

MVE edge. The error is expressed as a function of the number of

basis polynomials used, n poly . The resulting rate of convergence is

rather slow due to sharp cusps and fluctuations. 

Typical convergence of relative errors in material and kinematic

sensitivity fields ϕ 

l 
i 

with respect to their converged values ϕ 

end 
i 
re plotted against the Newton iteration number l in Fig. 21 . Here,

wo situations are depicted: first, material and kinematic DOFs are

nitialized with 10 % systematic error ( Fig. 21 a); second, kinematic

OFs are initialized by GDIC and the material DOFs are initialized

gain with 10 % systematic error. In both cases, fine MVE meshes

nd the fully resolved boundary are used. The curves show a fast

onvergence of the kinematic sensitivities when the relatively ac-

urate initialization through GDIC is adopted, whereas they con-

erge somewhat slower for inaccurate initialization. The observed

ehaviour thus suggests that updating kinematic sensitivity fields

nly selectively, or only once at the beginning of the iteration
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Fig. 24. RMS values and corresponding h opt of the GDIC mesh as functions of individual tests. (a) RMS values for both methods, and (b) optimal GDIC mesh element sizes h opt 

relative to the inclusions’ diameter d = 1 . In both cases, zero-noise images were used. 
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rocess, may suffice when displacements are initialized close to

heir correct values (recall Section 4.1 ) as they are approximately

ithin 5 % accuracy already for the first Newton iteration. 

In order to assess the accuracy of the BE-IDIC procedure, all 108

est cases summarized in the diagram of Fig. 12 have been re-

eated for the same 50 MC realizations of random microstructures.

ypical results are presented in Fig. 22 in terms of the mean values

nd standard deviations. These results are directly compared to the

est identification of the GDIC-IDIC method, characterized by the

ptimal GDIC mesh element size h opt . The optimal element size is

stablished by minimizing the following Root-Mean-Square (RMS)

orm: 

h opt = arg min ̂ h ∈ H 

ηrms ( ̂  h ) , 

ηrms ( ̂  h ) = 

√ 

n λmat ∑ 

i =1 

m 

2 , ̃ λi 
( ̂  h ) , 

(22) 

here m 

2 , ̃ λi 
( ̂  h ) = 

1 
n mc 

∑ n mc 
j=1 ̃

 λ2 
i, j 

( ̂  h ) is the second raw moment of

elative error associated with i th identified material parameter

omputed for j = 1 , . . . , n mc = 50 realizations, whereas H is a set

f all employed GDIC element mesh sizes. The adopted relative er-

or reads 

 = 

λ

λex 
− 1 . (23) 

he results in Fig. 22 show an improved accuracy of the BE-IDIC

ethod over the best results for the GDIC-IDIC approach, both in

erms of the mean values as well as standard deviations. Quanti-

ed in terms of the RMS norm, ηrms decreases approximately 3, 4,

nd 2 times for the tension, shear, and bending test. 

In order to evaluate the performance for all 108 test cases (re-

all Fig. 12 ), Fig. 23 reveals the corresponding RMS values ηrms .

he curves clearly show that the BE-IDIC method is in practically

ll cases more accurate compared to the best results of the GDIC-

DIC approach. The only exception is the shear test for coarse MVE

eshes and material contrast ratio ρ = 16 . For this particular con-

guration one can argue, based on the general trends emerging in

ll figures, that the kinematic freedom provided by coarse MVE

eshes is insufficient. For fine MVE meshes, on the other hand,

he differences between the two methods approach one order of

agnitude. 

Fig. 24 finally presents the RMS values for all test cases stacked

ogether along with corresponding optimal GDIC mesh element
izes. Interestingly, the optimal value h opt for the GDIC-IDIC ap-

roach could hardly be guessed a priori, nor a posteriori (without

nowledge of λex ), as it varies from test to test. This means that

he accuracy and precision of the GDIC-IDIC will always be less

hen applied in practice to real tests. The mean of h opt over all

ests equals 0.2162 d , which is a rather low value relative to inclu-

ions’ diameter d . This result shows once again that a high level of

etail should be captured by the MVE BCs. 

In terms of CPU time, identification of one material parameter

ombination took approximately 10 times more (66.9 versus 5.8 s)

or the BE-IDIC approach (initialized through GDIC) compared to

he GDIC-IDIC approach. Corresponding memory footprint was ap-

roximately 130 times more (975.9 versus 7.2 MB), mainly due to

he fact that the sparse data storage of kinematic sensitivity fields

as not been used. Note that computing times are based on a Mat-

ab implementation where computationally intensive parts were

oded in C++ and linked to the main code through mex files. Due

o this heterogeneity, reported computing times and their ratios

ay not be representative. 

.3. Image noise study 

In order to examine the effect of image noise, random white

aussian noise is superimposed on both the reference and de-

ormed images, i.e. ˜ f = f + ζ 2 

8 N , ˜ g = g + ζ 2 

8 N , 
(24) 

here ζ ∈ 

1 
100 { 1 , . . . , 5 } reflects the intensity of the image noise, f

nd g are matrices storing the evaluations of the images f and g at

ixel positions, and N denotes a matrix of the same dimensions

s f and g filled with iid Gaussian random variables having zero

ean and unit variance. In Eq. (24) , the value 2 8 has been used

ecause the full dynamic range of 8-bit digitization was exploited,

ecall Fig. 7 b. 

The mean and standard deviations of the identified parameters

btained from correlations of the noisy images ˜ f and ̃

 g are shown

n Fig. 25 as functions of ζ . In order to separate the influence of

oise as much as possible, the presented results correspond to fine

VE meshes only. As the optimal element size h opt in the GDIC-

DIC approach is unknown, the presented results correspond to the

DIC mesh element size that is closest to the mean optimal ele-

ent size computed for fine MVE meshes and all tests. The fig-

res clearly show that the BE-IDIC approach achieves significantly
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Fig. 25. Identified material parameters for noisy images for (a) and (b) tension, (c) and (d) shear, and (e) and (f) bending test. The GDIC-IDIC approach uses the best GDIC 

mesh in the mean. In all cases, ρ = 4 and fine MVE meshes used. 
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less biased results in terms of the mean values (important when

numerous measurements are carried out), and also a significantly

smaller standard deviation (important when only a limited number

of tests is performed). 

5. Summary and conclusions 

In this contribution, a systematic study has been presented re-

vealing the significant effects induced by inaccuracy in Bound-

ary Conditions (BCs) prescribed to a Microstructural Volume Ele-

ment (MVE) used in micromechanical parameter identification car-

ried out by Integrated Digital Image Correlation (IDIC). To this

end, heterogeneous specimens with simple random microstruc-

tures have been subjected to three virtual mechanical tests under
lane strain conditions. The main results can be summarized as

ollows: 

1. A high accuracy in BCs prescribed to the MVE model is essen-

tial, as even a small degree of error may strongly deteriorate

the systematic and statistical accuracy of the identified param-

eters. 

2. The intrinsic phenomenon of error locking in BCs (in GDIC

based methods) has been discussed and its effects on microme-

chanical parameter identification have been demonstrated in

the case of random noise and smoothing of kinematic boundary

data. 

3. Effects of errors in BCs obtained directly from Global Digital Im-

age Correlation (GDIC) have been investigated and proven to be

significant. Typically, a balance between the random error and
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inaccuracy due to smoothing needs to be reached, which can

hardly be guessed a priori. 

4. In order to remove the adverse effects of GDIC errors locked in

the MVE boundary, it is important to treat kinematic Degrees

Of Freedom (DOFs) associated with nodes located on the MVE

boundary as unknowns in the IDIC procedure, as also pointed

by Fedele (2015) for FEMU. The improved accuracy, however,

goes along with higher computational and memory require-

ments (approximately 10 times more computational time and

130 times more memory compared to the GDIC-IDIC approach).

5. Adaptivity in the MVE boundary of the BE-IDIC approach has

been shown to automatically guarantee a required level of de-

tail captured by boundary conditions, not known a priori and

yet needed for accurate microstructural parameter identifica-

tion. Other kinds of regularization in boundary displacements

need to be approached carefully due to the inherent local fluc-

tuations. 

6. Image noise analyses have revealed that noise further decreases

the accuracy of the identified results, especially when the BCs

are extracted from GDIC. When the DOFs of the nodes at the

MVE boundary are used as DOFs in the IDIC procedure, over-

all more accurate results are obtained than for the GDIC-IDIC

approach. 

7. Boundary sensitivity functions at the MVE boundary have in-

dicated that under the given circumstances, the tension test is

approximately one order of magnitude less sensitive to errors

in the prescribed BCs than the shear and bending tests. As this

test is also the least complex micro-mechanical test to perform

under in-situ microscopic observation, this simple test is most

appropriate for identification of microstructural parameters. 

Finally, note that the presented results were obtained for the

xact constitutive model, which is a rather unlikely situation in

eal experiments, and that also other significant sources of er-

ors exist. For accurate identification it is desirable, neverthe-

ess, to eliminate as many sources of potential error as possible,

hich may be best accomplished by enriching the IDIC DOFs with

isplacements at the boundary of the employed microstructural

odel. Sensitivity analyses to various other sources of errors and

ests on real experiments are further required, but lie outside the

cope of the current contribution. 
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