65 research outputs found

    Revealing the role of local stress on the depolarization of BNT-BT-based relaxors

    Get PDF
    Canonical relaxors exhibit an electric-field-induced phase transition between a macroscopically nonpolar and polar phase that can be tuned from being stable at low temperature to being reversible at high temperature. The reversibility of this phase change determines the electromechanical performance and large strains can be achieved if the polar phase is intrinsically unstable. This paper is on the thermal depolarization characteristics of a BNT-BT-based multiphase relaxor ceramic observed through the transition temperature from field-induced polar to nonpolar state. It is shown that the progress of detexturization strongly depends on the crystallographic phase. In the more susceptible phase, it becomes significant about 40 °C below the macroscopically observed transition temperature. Additionally, the surface domain structure vanishes at lower temperatures than expected from both dielectric and structural measurements. The development of strong interfacial stresses aiding depolarization, and a mismatch in chemical pressure between surface and bulk, are discussed as the origins for the observed effects. Tailoring of interfacial stresses through chemical adaption of crystallographic phase fractions opens up a pathway to optimize the strain performance of actuator materials and can become a useful tool to stabilize metastable crystallographic phases as well as for property tuning in piezotronics, Mott insulators and multiferroics

    Cyclic electric field response of morphotropic Bi1/2Na1/2TiO3-BaTiO3 piezoceramics

    Get PDF
    In this study, the evolution of field induced mechanisms in lead-free piezoelectric ceramics (1-x)Bi1/2Na1/2TiO3-xBaTiO(3) with x = 0.06 and 0.07 was investigated by transmission electron microscopy, neutron, and X-ray diffraction. Preliminary investigations revealed a strong degradation of macroscopic electromechanical properties within the first 100 bipolar electric cycles. Therefore, this structural investigation focuses on a comparative diffraction study of freshly prepared, poled, and fatigued specimens. Transmission electron microscopy and neutron diffraction of the initial specimens reveal the coexistence of a rhombohedral and a tetragonal phase with space group R3c and P4bm, respectively. In situ electric field X-ray diffraction reveals a pronounced field induced phase transition from a pseudocubic state to a phase composition of significantly distorted phases upon poling with an external electric field of 4 kV/mm. Although the structures of the two compositions are pseudocubic and almost indistinguishable in the unpoled virgin state, the electric field response shows significant differences depending on composition. For both compositions, the application of an electric field results in a field induced phase transition in the direction of the minority phase. Electric cycling has an opposite effect on the phase composition and results in a decreased phase fraction of the minority phase in the fatigued remanent state at 0 kV/mm. (C) 2015 AIP Publishing LLCopen

    Multi-analyser detector (MAD) for high-resolution and high-energy powder X-ray diffraction

    Get PDF
    For high-resolution powder diffraction in material science, high photon energies are necessary, especially for in situ and in operando experiments. For this purpose, a multi-analyser detector (MAD) was developed for the high-energy beamline P02.1 at PETRA III of the Deutsches Elektronen-Synchrotron (DESY). In order to be able to adjust the detector for the high photon energies of 60 keV, an individually adjustable analyser–crystal setup was designed. The adjustment is performed via piezo stepper motors for each of the ten channels. The detector shows a low and flat background as well as a high signal-to-noise ratio. A range of standard materials were measured for characterizing the performance. Two exemplary experiments were performed to demonstrate the potential for sophisticated structural analysis with the MAD: (i) the structure of a complex material based on strontium niobate titanate and strontium niobate zirconate was determined and (ii) an in situ stroboscopy experiment with an applied electric field on a highly absorbing piezoceramic was performed. These experiments demonstrate the capabilities of the new MAD, which advances the frontiers of the structural characterization of materials

    Practical high-performance lead-free piezoelectrics: Structural flexibility beyond utilizing multiphase coexistence

    Get PDF
    Due to growing concern for the environment and human health, searching for high-performance lead-free piezoceramics has been a hot topic of scientific and industrial research. Despite the significant progress achieved toward enhancing piezoelectricity, further efforts should be devoted to the synergistic improvement of piezoelectricity and its thermal stability. This study provides new insight into these topics. A new KNN-based lead-free ceramic material is presented, which features a large piezoelectric coefficient (d(33)) exceeding 500 pC/N and a high Curie temperature (T(c)) of  ∼200°C. The superior piezoelectric response strongly relies on the increased composition-induced structural flexibility due to lattice softening and decreased unit cell distortion. In contrast to piezoelectricity anomalies induced via polymorphic transition, this piezoelectricity enhancement is effective within a broad temperature range rather than a specific small range. In particular, a hierarchical domain architecture composed of nano-sized domains along the submicron domains was detected in this material system, which further contributes to the high piezoelectricity

    Electric-field-induced paraelectric to ferroelectric phase transformation in prototypical polycrystalline BaTiO₃

    Full text link
    An electric-field-induced paraelectric cubic to ferroelectric tetragonal phase transformation has been directly observed in prototypical polycrystalline BaTiO3 at temperatures above the Curie point (TC) using in situ high-energy synchrotron X-ray diffraction. The transformation persisted to a maximum temperature of 4-°C above TC. The nature of the observed field-induced transformation and the resulting development of domain texture within the induced phase were dependent on the proximity to the transition temperature, corresponding well to previous macroscopic measurements. The transition electric field increased with increasing temperature above TC, while the magnitude of the resultant tetragonal domain texture at the maximum electric field (4-kV mm-1) decreased at higher temperatures. These results provide insights into the phase transformation behavior of a prototypical ferroelectric and have important implications for the development of future large-strain phase-change actuator materials

    A sample cell for in situ electric-field-dependent structural characterization and macroscopic strain measurements

    Get PDF
    When studying electro-mechanical materials, observing the structural changes during the actuation process is necessary for gaining a complete picture of the structure-property relationship as certain mechanisms may be meta-stable during actuation. In situ diffraction methods offer a powerful and direct means of quantifying the structural contributions to the macroscopic strain of these materials. Here, a sample cell is demonstrated capable of measuring the structural variations of electro-mechanical materials under applied electric potentials up to 10?kV. The cell is designed for use with X-ray scattering techniques in reflection geometry, while simultaneously collecting macroscopic strain data using a linear displacement sensor. The results show that the macroscopic strain measured using the cell can be directly correlated with the microscopic response of the material obtained from diffraction data. The capabilities of the cell have been successfully demonstrated at the Powder Diffraction beamline of the Australian Synchrotron and the potential implementation of this cell with laboratory X-ray diffraction instrumentation is also discussed.A sample cell for in situ electric-field-dependent structural characterization and macroscopic strain measurements is demonstrated. The results show that the macroscopic strain measured using the cell can be directly correlated with the microscopic response of the material obtained from diffraction data
    corecore