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• Weighted Strain Orientation Distribution Function → lattice strain / piezoelectric effect

• E-WIMV: discrete method to obtain ODF → domain switching

• Refinement of scale factors → phase fractions
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Motivation
Functional materials which perform a designed action in response to an environmental stimulus are becoming increasingly valuable in the design of novel devices and technologies. An important class of functional materials are piezoelectric

perovskites. Their extraordinary (and well-known) ability to couple elastic strain and polarization under the influence of an applied electric field is exploited in piezoelectric sensors, actuators and for energy harvesting. Prominent examples are

multilayer stack actuators used in a large number of every-day and high-tech applications, e.g.:

• In ink-jet printers to increase efficiency1.

• In modern combustion engines for automobiles to control fuel injection cycles2.

• In trains, planes or cars they are used for active vibration damping to guarantee comfortable travelling3.

• In modern highly dynamic gantry type machine tools, piezoelectric actuators are used for active error compensation of structural oscillations at the tool centre point4.

In the past decade in situ and in operando techniques for the investigation of piezoceramics advanced signicantly5,6. However, to date the literature does not provide a method to correlate all structural mechanisms with the macroscopic

observations. Here we present a comprehensive model, which is capable of describing the macroscopic behaviour based on a model on the atomic scale7.

Experimental (measurement)
Special requirements are necessary for a successful X-ray or

neutron diffraction analysis. In order to resolve the coexisting and

highly correlated phases, a high angular resolution is mandatory.

At the same time a high Q-range is necessary to obtain enough

information to correctly determine the orientation distribution

function (ODF) of the textured material. The requirements could

be achieved with neutron diffraction measurements at high-

intensity neutron diffractometers such as D208 (Institute Laue-

Langevin, Grenoble) or WOMBAT9 (Australian Nuclear Science

and Technology Organisation). For each measurement, a series

of 13 complete diffraction patterns were collected with different

orientations of the electric field with respect to the incident beam

by moving the ω-sample table in 15° steps. By this means, the

relative orientation between the electric field vector and the

scattering vectors of the individual reflections was varied.

Experimental (analysis)
Data analysis was carried out using the software package MAUD (Materials Analysis Using

Diffraction)10. MAUD allows full pattern Rietveld refinements including full texture analysis for

multiple phases. Therefore, all data sets with different sample orientations contribute to the

refinement. By assigning the Euler angles of the experiment to each diffraction pattern, the

orientation dependent information can be exploited. For this additional information the

extended Williams-Imhof-Matthies-Vinel (E-WIMV) algorithm was used for texture refinement11

and the weighted strain orientation distribution function (WSODF) strain model for refinement of

the field induced lattice strain12. The phase fractions can be obtained fromRietveld refinement.

• No limitation due to 

absorption

• Full orientation series 

possible   

(0°≤ ω ≤ 180°)

• Fast measurement at 

beamlines like D20 (ILL) 

or WOMBAT (ANSTO)
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PIC 151 (Pb0.99[Zr0.45Ti0.47(Ni0.33Sb0.67)0.08]O3) BNT-25ST (0.75Bi½Na½TiO3 – 0.25SrTiO3) 
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Comparison of model and measurement
Macroscopic measurement: 10mHz

Diffraction model: 16µHz

→ Dynamic contribution?

Creep in PIC 151:

600s at 2kV/mm: 0.05%13

The in situ neutron diffraction patterns of a commercial ferroelectric material PIC151 and a incipient relaxor ferroelectric material BNT-25ST show all three field induced strain mechanisms, namely domain switching, lattice strain and phase

transition. In the MAUD software all instrumental and sample orientation angles can be assigned to the individual patterns. The final refinement consists of a regular Rietveld refinement based on a structure model and additional model

parameters for strain and texture for each phase. The figures below depict the measured and calculated patterns with insets of the 111C and 200C reflections for the remanent and the applied field state. The comparison of the measured data and

the patterns calculated from the fitted parameters shows the accurate modelling of the diffraction patterns.

PIC151 BNT-25STStrain calculation
From the orientation distribution function, the

lattice strain model and the phase fractions, the

macroscopic strain response can be calculated.

This way a quantification of the strain

mechanisms is possible.

While PIC151 exhibits a significant remanent

lattice and domain strain, BNT-25ST shows

almost no remanent strain at all. However, the

field induced strain in BNT-25ST is significantly

higher than the field induced strain of PIC151.

The evaluation of the strain behaviour of both

systems reveals fundamental differences. While

PIC151 is dominated by the lattice strain of the

rhombohedral phase, BNT-25ST is dominated by

the lattice strain of the tetragonal phase. In BNT-

25ST both phases show a pronounced domain

strain, while PIC151 only exhibits tetragonal

domain strain.

Strain mechanisms
These new insights in the strain mechanisms of

actuator materials explain the strong effect of phase

boundaries on the piezoelectric properties. In the

vicinity of a phase boundary, the activation energy of a

phase transition is low enough so that the applied

electric field can induce the transition in both

directions, depending on grain orientation. Thus, the

material can benefit from all polarization directions of

the involved phases. These additional directions result

in a formerly unknown 54° domain switching between

tetragonal and rhombohedral symmetry and explain

the exceptional strain behaviour of morphotropic

compositions.


