101 research outputs found

    Systemic treatment with pulsed electromagnetic fields do not affect bone microarchitecture in osteoporotic rats

    Get PDF
    Purpose: Pulsed electromagnetic fields (PEMF) are currently used in the treatment of spinal fusions and non-unions. There are indications that PEMF might also be effective in the treatment of osteoporosis. In this study we examined whether whole-body PEMF treatment affects the bone microarchitecture in an osteoporotic rat model. Methods: Twenty-week-old female rats were ovariectomised (n020). Four different PEMF treatment protocols based on previous experimental studies and based on clinically used PEMF signals were examined (2 h/day, 5 days/week). A control group did not receive PEMF. At zero, three and six weeks cancellous and cortical bone architectural changes at the proximal tibia were evaluated using in vivo microCT scanning. Results: PEMF treatment did not induce any changes in cancellous or cortical bone compared to untreated controls. Conclusions: Although previous studies have shown strong effects of PEMF in osteoporosis we were unable to demonstrate this in any of the treatment protocols. Using in vivo microCT scanning we were able to identify small bone changes in time. Subtle differences in the experimental setup might explain the differences in study outcomes in the literature. Since PEMF treatment is safe, future experimental studies on the effect of PEMF on bone can better be performed directly on humans, eliminating the potential translation issues between animals and humans. In this study we found no support for the use of PEMF in the treatment of osteoporosis

    The Effects of Hyperacute Serum on the Elements of the Human Subchondral Bone Marrow Niche

    Get PDF
    Mesenchymal stem cells (MSCs) are widely used in laboratory experiments as well as in human cell therapy. Their culture requires animal sera like fetal calf serum (FCS) as essential supplementation; however, animal sera pose a risk for clinical applications. Human blood derivatives, for example, platelet-rich plasma (PRP) releasates, are potential replacements of FCS; however, it is unclear which serum variant has the best effect on the given cell or tissue type. Additionally, blood derivatives are commonly used in musculoskeletal diseases like osteoarthritis (OA) or osteonecrosis as "proliferative agents" for the topical MSC pool. Hyperacute serum (HAS), a new serum derivative, has been designed to approximate the natural coagulation cascade with a single-step, additive-free preparation method. We investigated the effects of HAS on monolayer MSC cultures and in their natural niche, in 3D subchondral bone and marrow explants. Viability measurements, RT-qPCR evaluation for gene expression and flow cytometry for cell surface marker analysis were performed to compare the effects of FCS-, PRP-, or HAS-supplemented culture media. Monolayer MSCs showed significantly higher metabolic activity following 5 days' incubation in HAS, and osteoblast-specific mRNA expression was markedly increased, while cells also retained their MSC-specific cell surface markers. A similar effect was observed on bone and marrow explants, which was further confirmed with confocal microscopy analysis. Moreover, markedly higher bone marrow preservation was observed with histology in case of HAS supplementation compared to FCS. These findings indicate possible application of HAS in regenerative solutions of skeletal diseases like OA or osteonecrosis

    Osteo-Chondroprogenitor–Specific Deletion of the Selenocysteine tRNA Gene, Trsp, Leads to Chondronecrosis and Abnormal Skeletal Development: A Putative Model for Kashin-Beck Disease

    Get PDF
    Kashin-Beck disease, a syndrome characterized by short stature, skeletal deformities, and arthropathy of multiple joints, is highly prevalent in specific regions of Asia. The disease has been postulated to result from a combination of different environmental factors, including contamination of barley by mold mycotoxins, iodine deficiency, presence of humic substances in drinking water, and, importantly, deficiency of selenium. This multifunctional trace element, in the form of selenocysteine, is essential for normal selenoprotein function, including attenuation of excessive oxidative stress, and for the control of redox-sensitive molecules involved in cell growth and differentiation. To investigate the effects of skeletal selenoprotein deficiency, a Cre recombinase transgenic mouse line was used to trigger Trsp gene deletions in osteo-chondroprogenitors. Trsp encodes selenocysteine tRNA[Ser]Sec, required for the incorporation of selenocysteine residues into selenoproteins. The mutant mice exhibited growth retardation, epiphyseal growth plate abnormalities, and delayed skeletal ossification, as well as marked chondronecrosis of articular, auricular, and tracheal cartilages. Phenotypically, the mice thus replicated a number of the pathological features of Kashin-Beck disease, supporting the notion that selenium deficiency is important to the development of this syndrome

    Genome-Wide Gene Expression Analysis Suggests an Important Role of Hypoxia in the Pathogenesis of Endemic Osteochondropathy Kashin-Beck Disease

    Get PDF
    Kashin-Beck Disease (KBD) is an endemic osteochondropathy, the pathogenesis of which remains unclear now. In this study, we compared gene expression profiles of articular cartilage derived respectively from KBD patients and normal controls. Total RNA were isolated, amplified, labeled and hybridized to Agilent human 1A 22 k whole genome microarray chip. qRT-PCR was conducted to validate our microarray data. We detected 57 up-regulated genes (ratios ≥2.0) and 24 down-regulated genes (ratios ≤0.5) in KBD cartilage. To further identify the key genes involved in the pathogenesis of KBD, Bayesian analysis of variance for microarrays(BAM) software was applied and identified 12 potential key genes with an average ratio 6.64, involved in apoptosis, metabolism, cytokine & growth factor and cytoskeleton & cell movement. Gene Set Enrichment Analysis (GSEA) software was used to identify differently expressed gene ontology categories and pathways. GSEA found that a set of apoptosis, hypoxia and mitochondrial function related gene ontology categories and pathways were significantly up-regulated in KBD compared to normal controls. Based on the results of this study, we suggest that chronic hypoxia-induced mitochondrial damage and apoptosis might play an important role in the pathogenesis of KBD. Our efforts may help to understand the pathogenesis of KBD as well as other osteoarthrosis with similar articular cartilage lesions

    Proteomic mapping of differentially vulnerable pre-synaptic populations identifies regulators of neuronal stability in vivo.

    Get PDF
    Synapses are an early pathological target in many neurodegenerative diseases ranging from well-known adult onset conditions such as Alzheimer and Parkinson disease to neurodegenerative conditions of childhood such as spinal muscular atrophy (SMA) and neuronal ceroid lipofuscinosis (NCLs). However, the reasons why synapses are particularly vulnerable to such a broad range of neurodegeneration inducing stimuli remains unknown. To identify molecular modulators of synaptic stability and degeneration, we have used the Cln3-/- 33 mouse model of a juvenile form of NCL. We profiled and compared the molecular composition of anatomically-distinct, differentially-affected pre-synaptic populations from the Cln3-/- 35 mouse brain using proteomics followed by bioinformatic analyses. Identified protein candidates were then tested using a Drosophila CLN3 model to study their ability to modify the CLN3-neurodegenerative phenotype in vivo. We identified differential perturbations in a range of molecular cascades correlating with synaptic vulnerability, including valine catabolism and rho signalling pathways. Genetic and pharmacological targeting of key ‘hub’ proteins in such pathways was sufficient to modulate phenotypic presentation in a Drosophila CLN3 model. We propose that such a workflow provides a target rich method for the identification of novel disease regulators which could be applicable to the study of other conditions where appropriate models exist

    Combined 33rd SICOT and 17th PAOA Orthopaedic World Conference.

    No full text
    CongressesEditorialSCOPUS: ed.jinfo:eu-repo/semantics/publishe

    SICOT Declaration of Hyderabad on violence against healthcare workers

    No full text

    The 34th SICOT orthopaedic world congress

    No full text
    corecore